Cargando…
A New Image Classification Approach via Improved MobileNet Models with Local Receptive Field Expansion in Shallow Layers
Because deep neural networks (DNNs) are both memory-intensive and computation-intensive, they are difficult to apply to embedded systems with limited hardware resources. Therefore, DNN models need to be compressed and accelerated. By applying depthwise separable convolutions, MobileNet can decrease...
Autores principales: | Wang, Wei, Hu, Yiyang, Zou, Ting, Liu, Hongmei, Wang, Jin, Wang, Xin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7416240/ https://www.ncbi.nlm.nih.gov/pubmed/32802028 http://dx.doi.org/10.1155/2020/8817849 |
Ejemplares similares
-
Classification of Breast Lesions on DCE-MRI Data Using a Fine-Tuned MobileNet
por: Wang, Long, et al.
Publicado: (2023) -
An End-to-End Steel Surface Classification Approach Based on EDCGAN and MobileNet V2
por: Jin, Ge, et al.
Publicado: (2023) -
Grad-MobileNet: A Gradient-Based Unsupervised Learning Method for Laser Welding Surface Defect Classification
por: Xiao, Sizhe, et al.
Publicado: (2023) -
Mobile-HR: An Ophthalmologic-Based Classification System for Diagnosis of Hypertensive Retinopathy Using Optimized MobileNet Architecture
por: Sajid, Muhammad Zaheer, et al.
Publicado: (2023) -
An Actinic Keratosis Auxiliary Diagnosis Method Based on an Enhanced MobileNet Model
por: Li, Shiyang, et al.
Publicado: (2023)