Cargando…
Remaining Useful Life Estimation Using Deep Convolutional Generative Adversarial Networks Based on an Autoencoder Scheme
Accurate predictions of remaining useful life (RUL) of important components play a crucial role in system reliability, which is the basis of prognostics and health management (PHM). This paper proposed an integrated deep learning approach for RUL prediction of a turbofan engine by integrating an aut...
Autores principales: | Hou, Guisheng, Xu, Shuo, Zhou, Nan, Yang, Lei, Fu, Quanhao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7416243/ https://www.ncbi.nlm.nih.gov/pubmed/32802032 http://dx.doi.org/10.1155/2020/9601389 |
Ejemplares similares
-
A One-Stage Ensemble Framework Based on Convolutional Autoencoder for Remaining Useful Life Estimation
por: Park, Yong-Keun, et al.
Publicado: (2022) -
Molecular Generation for Desired Transcriptome Changes With Adversarial Autoencoders
por: Shayakhmetov, Rim, et al.
Publicado: (2020) -
Convolutional autoencoder joint boundary and mask adversarial learning for fundus image segmentation
por: Zhang, Xu, et al.
Publicado: (2022) -
Connectivity-informed drainage network generation using deep convolution generative adversarial networks
por: Kim, Sung Eun, et al.
Publicado: (2021) -
Breast Ultrasound Image Synthesis using Deep Convolutional Generative Adversarial Networks
por: Fujioka, Tomoyuki, et al.
Publicado: (2019)