Cargando…
Research and Verification of Convolutional Neural Network Lightweight in BCI
With the increasing of depth and complexity of the convolutional neural network, parameter dimensionality and volume of computing have greatly restricted its applications. Based on the SqueezeNet network structure, this study introduces a block convolution and uses channel shuffle between blocks to...
Autores principales: | Xu, Shipu, Li, Runlong, Wang, Yunsheng, Liu, Yong, Hu, Wenwen, Wu, Yingjing, Zhang, Chenxi, Liu, Chang, Ma, Chao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7416271/ https://www.ncbi.nlm.nih.gov/pubmed/32802151 http://dx.doi.org/10.1155/2020/5916818 |
Ejemplares similares
-
Convolutional Neural Network for Multi-Category Rapid Serial Visual Presentation BCI
por: Manor, Ran, et al.
Publicado: (2015) -
Convolutional neural network in rice disease recognition: accuracy, speed and lightweight
por: Ning, Hongwei, et al.
Publicado: (2023) -
Lightweight-Convolutional Neural Network for Apple Leaf Disease Identification
por: Fu, Lili, et al.
Publicado: (2022) -
Real-Time Target Detection Method Based on Lightweight Convolutional Neural Network
por: Yun, Juntong, et al.
Publicado: (2022) -
Multi-person feature fusion transfer learning-based convolutional neural network for SSVEP-based collaborative BCI
por: Li, Penghai, et al.
Publicado: (2022)