Cargando…
An Inverse Problem Solution Scheme for Solving the Optimization Problem of Drug-Controlled Release from Multilaminated Devices
The optimization problem of drug release based on the multilaminated drug-controlled release devices has been solved in this paper under the inverse problem solution scheme. From the viewpoint of inverse problem, the solution of optimization problem can be regarded as the solution problem of a Fredh...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7416294/ https://www.ncbi.nlm.nih.gov/pubmed/32802154 http://dx.doi.org/10.1155/2020/8380691 |
Sumario: | The optimization problem of drug release based on the multilaminated drug-controlled release devices has been solved in this paper under the inverse problem solution scheme. From the viewpoint of inverse problem, the solution of optimization problem can be regarded as the solution problem of a Fredholm integral equation of first kind. The solution of the Fredholm integral equation of first kind is a well-known ill-posed problem. In order to solve the severe ill-posedness, a modified regularization method is presented based on the Tikhonov regularization method and the truncated singular value decomposition method. The convergence analysis of the modified regularization method is also given. The optimization results of the initial drug concentration distribution obtained by the modified regularization method demonstrate that the inverse problem solution scheme proposed in this paper has the advantages of the numerical accuracy and antinoise property. |
---|