Cargando…
The Impact of the Wuhan Covid-19 Lockdown on Air Pollution and Health: A Machine Learning and Augmented Synthetic Control Approach
We quantify the impact of the Wuhan Covid-19 lockdown on concentrations of four air pollutants using a two-step approach. First, we use machine learning to remove the confounding effects of weather conditions on pollution concentrations. Second, we use a new augmented synthetic control method (Ben-M...
Autores principales: | Cole, Matthew A., Elliott, Robert J R, Liu, Bowen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7416596/ https://www.ncbi.nlm.nih.gov/pubmed/32836865 http://dx.doi.org/10.1007/s10640-020-00483-4 |
Ejemplares similares
-
High resolution mapping of nighttime light and air pollutants during the COVID-19 lockdown in Wuhan
por: Zheng, Sheng, et al.
Publicado: (2021) -
Impact of city lockdown on the air quality of COVID-19-hit of Wuhan city
por: Lian, Xinbo, et al.
Publicado: (2020) -
Understanding the true effects of the COVID-19 lockdown on air pollution by means of machine learning()
por: Lovrić, Mario, et al.
Publicado: (2021) -
Modelling the Effect of COVID-19 Lockdown on Air Pollution in Makkah Saudi Arabia with a Supervised Machine Learning Approach
por: Habeebullah, Turki M., et al.
Publicado: (2022) -
COVID-19 pandemic in Wuhan: Ambient air quality and the relationships between criteria air pollutants and meteorological variables before, during, and after lockdown
por: Sulaymon, Ishaq Dimeji, et al.
Publicado: (2021)