Cargando…
Assessing geographic controls of hair isotopic variability in human populations: A case-study in Canada
Studying the isotope variability in fast-growing human tissues (e.g., hair, nails) is a powerful tool to investigate human nutrition. However, interpreting the controls of this isotopic variability at the population scale is often challenging as multiple factors can superimpose on the isotopic signa...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7416927/ https://www.ncbi.nlm.nih.gov/pubmed/32776947 http://dx.doi.org/10.1371/journal.pone.0237105 |
Sumario: | Studying the isotope variability in fast-growing human tissues (e.g., hair, nails) is a powerful tool to investigate human nutrition. However, interpreting the controls of this isotopic variability at the population scale is often challenging as multiple factors can superimpose on the isotopic signals of a current population. Here, we analyse carbon, nitrogen, and sulphur isotopes in hair from 590 Canadian resident volunteers along with demographics, dietary and geographic information about each participant. We use a series of machine-learning regressions to demonstrate that the isotopic values in Canadian residents’ hair are not only influenced by dietary choices but by geographic controls. First, we show that isotopic values in Canadian residents’ hair have a limited range of variability consistent with the homogenization of Canadian dietary habits (as in other industrialized countries). As expected, some of the isotopic variability within the population correlates with recorded individual dietary choices. More interestingly, some regional spatial patterns emerge from carbon and sulphur isotope variations. The high carbon isotope composition of the hair of eastern Canadians relative to that of western Canadians correlates with the dominance of corn in the eastern Canadian food-industry. The gradient of sulphur isotope composition in Canadian hair from coast to inland regions correlates with the increasing soil pH and decreasing deposition of marine-derived sulphate aerosols in local food systems. We conclude that part of the isotopic variability found in the hair of Canadian residents reflects the isotopic signature associated with specific environmental conditions and agricultural practices of regional food systems transmitted to humans through the high consumption rate of intra-provincial food in Canada. Our study also underscores the strong potential of sulphur isotopes as tracers of human and food provenance. |
---|