Cargando…
Crash analysis of mountainous freeways with high bridge and tunnel ratios using road scenario-based discretization
Mountainous freeways with high bridge and tunnel ratios are a new type of road that rarely contain many special road sections formed by various structures. The crash characteristics of the road are still unclear, but it also provides conditions for studying how various road environments affect traff...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7416955/ https://www.ncbi.nlm.nih.gov/pubmed/32776981 http://dx.doi.org/10.1371/journal.pone.0237408 |
_version_ | 1783569394124718080 |
---|---|
author | Sun, Zongyuan Liu, Shuo Li, Dongxue Tang, Boming Fang, Shouen |
author_facet | Sun, Zongyuan Liu, Shuo Li, Dongxue Tang, Boming Fang, Shouen |
author_sort | Sun, Zongyuan |
collection | PubMed |
description | Mountainous freeways with high bridge and tunnel ratios are a new type of road that rarely contain many special road sections formed by various structures. The crash characteristics of the road are still unclear, but it also provides conditions for studying how various road environments affect traffic. In view of the various structures and differences in the driving environments, a scenario-based discretization method for such a road was established. The traffic-influence areas of elementary and composite structures were proposed and defined. Actual data were analyzed to investigate the crash patterns in an entire freeway and in each special section through statistical and comparative research. The results demonstrate the applicability and validity of this method. The crash rates were found to be the highest in interchange and service areas, lower in ordinary sections, and the lowest in tunnels, being mostly attributed to collisions with fixtures. The crash severity on bridges and bridge groups was significantly higher than that on the other types of road sections, being mostly attributed to single-vehicle crashes. The annual average daily traffic and driving adaptability were found to be related to crashes. The findings shed some light on the road design and traffic management implications for strengthening the traffic safety of mountainous freeways. |
format | Online Article Text |
id | pubmed-7416955 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-74169552020-08-19 Crash analysis of mountainous freeways with high bridge and tunnel ratios using road scenario-based discretization Sun, Zongyuan Liu, Shuo Li, Dongxue Tang, Boming Fang, Shouen PLoS One Research Article Mountainous freeways with high bridge and tunnel ratios are a new type of road that rarely contain many special road sections formed by various structures. The crash characteristics of the road are still unclear, but it also provides conditions for studying how various road environments affect traffic. In view of the various structures and differences in the driving environments, a scenario-based discretization method for such a road was established. The traffic-influence areas of elementary and composite structures were proposed and defined. Actual data were analyzed to investigate the crash patterns in an entire freeway and in each special section through statistical and comparative research. The results demonstrate the applicability and validity of this method. The crash rates were found to be the highest in interchange and service areas, lower in ordinary sections, and the lowest in tunnels, being mostly attributed to collisions with fixtures. The crash severity on bridges and bridge groups was significantly higher than that on the other types of road sections, being mostly attributed to single-vehicle crashes. The annual average daily traffic and driving adaptability were found to be related to crashes. The findings shed some light on the road design and traffic management implications for strengthening the traffic safety of mountainous freeways. Public Library of Science 2020-08-10 /pmc/articles/PMC7416955/ /pubmed/32776981 http://dx.doi.org/10.1371/journal.pone.0237408 Text en © 2020 Sun et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Sun, Zongyuan Liu, Shuo Li, Dongxue Tang, Boming Fang, Shouen Crash analysis of mountainous freeways with high bridge and tunnel ratios using road scenario-based discretization |
title | Crash analysis of mountainous freeways with high bridge and tunnel ratios using road scenario-based discretization |
title_full | Crash analysis of mountainous freeways with high bridge and tunnel ratios using road scenario-based discretization |
title_fullStr | Crash analysis of mountainous freeways with high bridge and tunnel ratios using road scenario-based discretization |
title_full_unstemmed | Crash analysis of mountainous freeways with high bridge and tunnel ratios using road scenario-based discretization |
title_short | Crash analysis of mountainous freeways with high bridge and tunnel ratios using road scenario-based discretization |
title_sort | crash analysis of mountainous freeways with high bridge and tunnel ratios using road scenario-based discretization |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7416955/ https://www.ncbi.nlm.nih.gov/pubmed/32776981 http://dx.doi.org/10.1371/journal.pone.0237408 |
work_keys_str_mv | AT sunzongyuan crashanalysisofmountainousfreewayswithhighbridgeandtunnelratiosusingroadscenariobaseddiscretization AT liushuo crashanalysisofmountainousfreewayswithhighbridgeandtunnelratiosusingroadscenariobaseddiscretization AT lidongxue crashanalysisofmountainousfreewayswithhighbridgeandtunnelratiosusingroadscenariobaseddiscretization AT tangboming crashanalysisofmountainousfreewayswithhighbridgeandtunnelratiosusingroadscenariobaseddiscretization AT fangshouen crashanalysisofmountainousfreewayswithhighbridgeandtunnelratiosusingroadscenariobaseddiscretization |