Cargando…
New technologies in the mix: Assessing N‐mixture models for abundance estimation using automated detection data from drone surveys
1. Reliable estimates of abundance are critical in effectively managing threatened species, but the feasibility of integrating data from wildlife surveys completed using advanced technologies such as remotely piloted aircraft systems (RPAS) and machine learning into abundance estimation methods such...
Autores principales: | Corcoran, Evangeline, Denman, Simon, Hamilton, Grant |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7417234/ https://www.ncbi.nlm.nih.gov/pubmed/32788970 http://dx.doi.org/10.1002/ece3.6522 |
Ejemplares similares
-
Evaluating new technology for biodiversity monitoring: Are drone surveys biased?
por: Corcoran, Evangeline, et al.
Publicado: (2021) -
Automated detection of koalas using low-level aerial surveillance and machine learning
por: Corcoran, Evangeline, et al.
Publicado: (2019) -
N-mixture models reliably estimate the abundance of small vertebrates
por: Ficetola, Gentile Francesco, et al.
Publicado: (2018) -
Estimating Lion Abundance using N-mixture Models for Social Species
por: Belant, Jerrold L., et al.
Publicado: (2016) -
Artificial intelligence for automated detection of large mammals creates path to upscale drone surveys
por: Lenzi, Javier, et al.
Publicado: (2023)