Cargando…
Independent Validation of Early-Stage Non-Small Cell Lung Cancer Prognostic Scores Incorporating Epigenetic and Transcriptional Biomarkers With Gene-Gene Interactions and Main Effects
BACKGROUND: DNA methylation and gene expression are promising biomarkers of various cancers, including non-small cell lung cancer (NSCLC). Besides the main effects of biomarkers, the progression of complex diseases is also influenced by gene-gene (G×G) interactions. RESEARCH QUESTION: Would screenin...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American College of Chest Physicians
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7417380/ https://www.ncbi.nlm.nih.gov/pubmed/32113923 http://dx.doi.org/10.1016/j.chest.2020.01.048 |
_version_ | 1783569480267333632 |
---|---|
author | Zhang, Ruyang Chen, Chao Dong, Xuesi Shen, Sipeng Lai, Linjing He, Jieyu You, Dongfang Lin, Lijuan Zhu, Ying Huang, Hui Chen, Jiajin Wei, Liangmin Chen, Xin Li, Yi Guo, Yichen Duan, Weiwei Liu, Liya Su, Li Shafer, Andrea Fleischer, Thomas Moksnes Bjaanæs, Maria Karlsson, Anna Planck, Maria Wang, Rui Staaf, Johan Helland, Åslaug Esteller, Manel Wei, Yongyue Chen, Feng Christiani, David C. |
author_facet | Zhang, Ruyang Chen, Chao Dong, Xuesi Shen, Sipeng Lai, Linjing He, Jieyu You, Dongfang Lin, Lijuan Zhu, Ying Huang, Hui Chen, Jiajin Wei, Liangmin Chen, Xin Li, Yi Guo, Yichen Duan, Weiwei Liu, Liya Su, Li Shafer, Andrea Fleischer, Thomas Moksnes Bjaanæs, Maria Karlsson, Anna Planck, Maria Wang, Rui Staaf, Johan Helland, Åslaug Esteller, Manel Wei, Yongyue Chen, Feng Christiani, David C. |
author_sort | Zhang, Ruyang |
collection | PubMed |
description | BACKGROUND: DNA methylation and gene expression are promising biomarkers of various cancers, including non-small cell lung cancer (NSCLC). Besides the main effects of biomarkers, the progression of complex diseases is also influenced by gene-gene (G×G) interactions. RESEARCH QUESTION: Would screening the functional capacity of biomarkers on the basis of main effects or interactions, using multiomics data, improve the accuracy of cancer prognosis? STUDY DESIGN AND METHODS: Biomarker screening and model validation were used to construct and validate a prognostic prediction model. NSCLC prognosis-associated biomarkers were identified on the basis of either their main effects or interactions with two types of omics data. A prognostic score incorporating epigenetic and transcriptional biomarkers, as well as clinical information, was independently validated. RESULTS: Twenty-six pairs of biomarkers with G×G interactions and two biomarkers with main effects were significantly associated with NSCLC survival. Compared with a model using clinical information only, the accuracy of the epigenetic and transcriptional biomarker-based prognostic model, measured by area under the receiver operating characteristic curve (AUC), increased by 35.38% (95% CI, 27.09%-42.17%; P = 5.10 × 10(–17)) and 34.85% (95% CI, 26.33%-41.87%; P = 2.52 × 10(–18)) for 3- and 5-year survival, respectively, which exhibited a superior predictive ability for NSCLC survival (AUC(3 year), 0.88 [95% CI, 0.83-0.93]; and AUC(5 year), 0.89 [95% CI, 0.83-0.93]) in an independent Cancer Genome Atlas population. G×G interactions contributed a 65.2% and 91.3% increase in prediction accuracy for 3- and 5-year survival, respectively. INTERPRETATION: The integration of epigenetic and transcriptional biomarkers with main effects and G×G interactions significantly improves the accuracy of prognostic prediction of early-stage NSCLC survival. |
format | Online Article Text |
id | pubmed-7417380 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American College of Chest Physicians |
record_format | MEDLINE/PubMed |
spelling | pubmed-74173802021-08-01 Independent Validation of Early-Stage Non-Small Cell Lung Cancer Prognostic Scores Incorporating Epigenetic and Transcriptional Biomarkers With Gene-Gene Interactions and Main Effects Zhang, Ruyang Chen, Chao Dong, Xuesi Shen, Sipeng Lai, Linjing He, Jieyu You, Dongfang Lin, Lijuan Zhu, Ying Huang, Hui Chen, Jiajin Wei, Liangmin Chen, Xin Li, Yi Guo, Yichen Duan, Weiwei Liu, Liya Su, Li Shafer, Andrea Fleischer, Thomas Moksnes Bjaanæs, Maria Karlsson, Anna Planck, Maria Wang, Rui Staaf, Johan Helland, Åslaug Esteller, Manel Wei, Yongyue Chen, Feng Christiani, David C. Chest Original Research BACKGROUND: DNA methylation and gene expression are promising biomarkers of various cancers, including non-small cell lung cancer (NSCLC). Besides the main effects of biomarkers, the progression of complex diseases is also influenced by gene-gene (G×G) interactions. RESEARCH QUESTION: Would screening the functional capacity of biomarkers on the basis of main effects or interactions, using multiomics data, improve the accuracy of cancer prognosis? STUDY DESIGN AND METHODS: Biomarker screening and model validation were used to construct and validate a prognostic prediction model. NSCLC prognosis-associated biomarkers were identified on the basis of either their main effects or interactions with two types of omics data. A prognostic score incorporating epigenetic and transcriptional biomarkers, as well as clinical information, was independently validated. RESULTS: Twenty-six pairs of biomarkers with G×G interactions and two biomarkers with main effects were significantly associated with NSCLC survival. Compared with a model using clinical information only, the accuracy of the epigenetic and transcriptional biomarker-based prognostic model, measured by area under the receiver operating characteristic curve (AUC), increased by 35.38% (95% CI, 27.09%-42.17%; P = 5.10 × 10(–17)) and 34.85% (95% CI, 26.33%-41.87%; P = 2.52 × 10(–18)) for 3- and 5-year survival, respectively, which exhibited a superior predictive ability for NSCLC survival (AUC(3 year), 0.88 [95% CI, 0.83-0.93]; and AUC(5 year), 0.89 [95% CI, 0.83-0.93]) in an independent Cancer Genome Atlas population. G×G interactions contributed a 65.2% and 91.3% increase in prediction accuracy for 3- and 5-year survival, respectively. INTERPRETATION: The integration of epigenetic and transcriptional biomarkers with main effects and G×G interactions significantly improves the accuracy of prognostic prediction of early-stage NSCLC survival. American College of Chest Physicians 2020-08 2020-02-28 /pmc/articles/PMC7417380/ /pubmed/32113923 http://dx.doi.org/10.1016/j.chest.2020.01.048 Text en © 2020 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Original Research Zhang, Ruyang Chen, Chao Dong, Xuesi Shen, Sipeng Lai, Linjing He, Jieyu You, Dongfang Lin, Lijuan Zhu, Ying Huang, Hui Chen, Jiajin Wei, Liangmin Chen, Xin Li, Yi Guo, Yichen Duan, Weiwei Liu, Liya Su, Li Shafer, Andrea Fleischer, Thomas Moksnes Bjaanæs, Maria Karlsson, Anna Planck, Maria Wang, Rui Staaf, Johan Helland, Åslaug Esteller, Manel Wei, Yongyue Chen, Feng Christiani, David C. Independent Validation of Early-Stage Non-Small Cell Lung Cancer Prognostic Scores Incorporating Epigenetic and Transcriptional Biomarkers With Gene-Gene Interactions and Main Effects |
title | Independent Validation of Early-Stage Non-Small Cell Lung Cancer Prognostic Scores Incorporating Epigenetic and Transcriptional Biomarkers With Gene-Gene Interactions and Main Effects |
title_full | Independent Validation of Early-Stage Non-Small Cell Lung Cancer Prognostic Scores Incorporating Epigenetic and Transcriptional Biomarkers With Gene-Gene Interactions and Main Effects |
title_fullStr | Independent Validation of Early-Stage Non-Small Cell Lung Cancer Prognostic Scores Incorporating Epigenetic and Transcriptional Biomarkers With Gene-Gene Interactions and Main Effects |
title_full_unstemmed | Independent Validation of Early-Stage Non-Small Cell Lung Cancer Prognostic Scores Incorporating Epigenetic and Transcriptional Biomarkers With Gene-Gene Interactions and Main Effects |
title_short | Independent Validation of Early-Stage Non-Small Cell Lung Cancer Prognostic Scores Incorporating Epigenetic and Transcriptional Biomarkers With Gene-Gene Interactions and Main Effects |
title_sort | independent validation of early-stage non-small cell lung cancer prognostic scores incorporating epigenetic and transcriptional biomarkers with gene-gene interactions and main effects |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7417380/ https://www.ncbi.nlm.nih.gov/pubmed/32113923 http://dx.doi.org/10.1016/j.chest.2020.01.048 |
work_keys_str_mv | AT zhangruyang independentvalidationofearlystagenonsmallcelllungcancerprognosticscoresincorporatingepigeneticandtranscriptionalbiomarkerswithgenegeneinteractionsandmaineffects AT chenchao independentvalidationofearlystagenonsmallcelllungcancerprognosticscoresincorporatingepigeneticandtranscriptionalbiomarkerswithgenegeneinteractionsandmaineffects AT dongxuesi independentvalidationofearlystagenonsmallcelllungcancerprognosticscoresincorporatingepigeneticandtranscriptionalbiomarkerswithgenegeneinteractionsandmaineffects AT shensipeng independentvalidationofearlystagenonsmallcelllungcancerprognosticscoresincorporatingepigeneticandtranscriptionalbiomarkerswithgenegeneinteractionsandmaineffects AT lailinjing independentvalidationofearlystagenonsmallcelllungcancerprognosticscoresincorporatingepigeneticandtranscriptionalbiomarkerswithgenegeneinteractionsandmaineffects AT hejieyu independentvalidationofearlystagenonsmallcelllungcancerprognosticscoresincorporatingepigeneticandtranscriptionalbiomarkerswithgenegeneinteractionsandmaineffects AT youdongfang independentvalidationofearlystagenonsmallcelllungcancerprognosticscoresincorporatingepigeneticandtranscriptionalbiomarkerswithgenegeneinteractionsandmaineffects AT linlijuan independentvalidationofearlystagenonsmallcelllungcancerprognosticscoresincorporatingepigeneticandtranscriptionalbiomarkerswithgenegeneinteractionsandmaineffects AT zhuying independentvalidationofearlystagenonsmallcelllungcancerprognosticscoresincorporatingepigeneticandtranscriptionalbiomarkerswithgenegeneinteractionsandmaineffects AT huanghui independentvalidationofearlystagenonsmallcelllungcancerprognosticscoresincorporatingepigeneticandtranscriptionalbiomarkerswithgenegeneinteractionsandmaineffects AT chenjiajin independentvalidationofearlystagenonsmallcelllungcancerprognosticscoresincorporatingepigeneticandtranscriptionalbiomarkerswithgenegeneinteractionsandmaineffects AT weiliangmin independentvalidationofearlystagenonsmallcelllungcancerprognosticscoresincorporatingepigeneticandtranscriptionalbiomarkerswithgenegeneinteractionsandmaineffects AT chenxin independentvalidationofearlystagenonsmallcelllungcancerprognosticscoresincorporatingepigeneticandtranscriptionalbiomarkerswithgenegeneinteractionsandmaineffects AT liyi independentvalidationofearlystagenonsmallcelllungcancerprognosticscoresincorporatingepigeneticandtranscriptionalbiomarkerswithgenegeneinteractionsandmaineffects AT guoyichen independentvalidationofearlystagenonsmallcelllungcancerprognosticscoresincorporatingepigeneticandtranscriptionalbiomarkerswithgenegeneinteractionsandmaineffects AT duanweiwei independentvalidationofearlystagenonsmallcelllungcancerprognosticscoresincorporatingepigeneticandtranscriptionalbiomarkerswithgenegeneinteractionsandmaineffects AT liuliya independentvalidationofearlystagenonsmallcelllungcancerprognosticscoresincorporatingepigeneticandtranscriptionalbiomarkerswithgenegeneinteractionsandmaineffects AT suli independentvalidationofearlystagenonsmallcelllungcancerprognosticscoresincorporatingepigeneticandtranscriptionalbiomarkerswithgenegeneinteractionsandmaineffects AT shaferandrea independentvalidationofearlystagenonsmallcelllungcancerprognosticscoresincorporatingepigeneticandtranscriptionalbiomarkerswithgenegeneinteractionsandmaineffects AT fleischerthomas independentvalidationofearlystagenonsmallcelllungcancerprognosticscoresincorporatingepigeneticandtranscriptionalbiomarkerswithgenegeneinteractionsandmaineffects AT moksnesbjaanæsmaria independentvalidationofearlystagenonsmallcelllungcancerprognosticscoresincorporatingepigeneticandtranscriptionalbiomarkerswithgenegeneinteractionsandmaineffects AT karlssonanna independentvalidationofearlystagenonsmallcelllungcancerprognosticscoresincorporatingepigeneticandtranscriptionalbiomarkerswithgenegeneinteractionsandmaineffects AT planckmaria independentvalidationofearlystagenonsmallcelllungcancerprognosticscoresincorporatingepigeneticandtranscriptionalbiomarkerswithgenegeneinteractionsandmaineffects AT wangrui independentvalidationofearlystagenonsmallcelllungcancerprognosticscoresincorporatingepigeneticandtranscriptionalbiomarkerswithgenegeneinteractionsandmaineffects AT staafjohan independentvalidationofearlystagenonsmallcelllungcancerprognosticscoresincorporatingepigeneticandtranscriptionalbiomarkerswithgenegeneinteractionsandmaineffects AT hellandaslaug independentvalidationofearlystagenonsmallcelllungcancerprognosticscoresincorporatingepigeneticandtranscriptionalbiomarkerswithgenegeneinteractionsandmaineffects AT estellermanel independentvalidationofearlystagenonsmallcelllungcancerprognosticscoresincorporatingepigeneticandtranscriptionalbiomarkerswithgenegeneinteractionsandmaineffects AT weiyongyue independentvalidationofearlystagenonsmallcelllungcancerprognosticscoresincorporatingepigeneticandtranscriptionalbiomarkerswithgenegeneinteractionsandmaineffects AT chenfeng independentvalidationofearlystagenonsmallcelllungcancerprognosticscoresincorporatingepigeneticandtranscriptionalbiomarkerswithgenegeneinteractionsandmaineffects AT christianidavidc independentvalidationofearlystagenonsmallcelllungcancerprognosticscoresincorporatingepigeneticandtranscriptionalbiomarkerswithgenegeneinteractionsandmaineffects |