Cargando…
Overall Survival Prediction in Glioblastoma With Radiomic Features Using Machine Learning
Glioblastoma is a WHO grade IV brain tumor, which leads to poor overall survival (OS) of patients. For precise surgical and treatment planning, OS prediction of glioblastoma (GBM) patients is highly desired by clinicians and oncologists. Radiomic research attempts at predicting disease prognosis, th...
Autores principales: | Baid, Ujjwal, Rane, Swapnil U., Talbar, Sanjay, Gupta, Sudeep, Thakur, Meenakshi H., Moiyadi, Aliasgar, Mahajan, Abhishek |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7417437/ https://www.ncbi.nlm.nih.gov/pubmed/32848682 http://dx.doi.org/10.3389/fncom.2020.00061 |
Ejemplares similares
-
A Novel Approach for Fully Automatic Intra-Tumor Segmentation With 3D U-Net Architecture for Gliomas
por: Baid, Ujjwal, et al.
Publicado: (2020) -
Predicting IDH subtype of grade 4 astrocytoma and glioblastoma from tumor radiomic patterns extracted from multiparametric magnetic resonance images using a machine learning approach
por: Kandalgaonkar, Pashmina, et al.
Publicado: (2022) -
Machine Learning and Radiomic Features to Predict Overall Survival Time for Glioblastoma Patients
por: Chato, Lina, et al.
Publicado: (2021) -
Generative adversarial networks based skin lesion segmentation
por: Innani, Shubham, et al.
Publicado: (2023) -
Deep learning based automated epidermal growth factor receptor and anaplastic lymphoma kinase status prediction of brain metastasis in non-small cell lung cancer
por: Mahajan, Abhishek, et al.
Publicado: (2023)