Cargando…

Long-term and longitudinal nutrient stoichiometry changes in oligotrophic cascade reservoirs with trout cage aquaculture

The potential nutrient stoichiometry changes caused by trout cage aquaculture is concerned especially in oligotrophic waters. Long-term total nitrogen (N), total phosphorus (P) and N:P ratio changes in 6 cascade reservoirs with rainbow trout cage aquaculture in the oligotrophic upstream Yellow River...

Descripción completa

Detalles Bibliográficos
Autores principales: Miao, Shiyu, Jian, Shenglong, Liu, Yang, Li, Changzhong, Guan, Hongtao, Li, Kemao, Wang, Guojie, Wang, Zhenji
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7417551/
https://www.ncbi.nlm.nih.gov/pubmed/32778695
http://dx.doi.org/10.1038/s41598-020-68866-7
Descripción
Sumario:The potential nutrient stoichiometry changes caused by trout cage aquaculture is concerned especially in oligotrophic waters. Long-term total nitrogen (N), total phosphorus (P) and N:P ratio changes in 6 cascade reservoirs with rainbow trout cage aquaculture in the oligotrophic upstream Yellow River (UYR) were studied from 2013 to 2017 in this paper. The 5-year monitoring results showed that N, P and N:P ratio levels showed no obvious long-term changes in high-altitude oligotrophic waters with rainbow trout cage aquaculture. No obvious longitudinal N, P and N:P ratio level changes were observed in the 6 cascade reservoirs from upstream Longyangxia Reservoir (LYR) to downstream Jishixia Reservoir (JSR). The increased N and P resulting from the cage aquaculture accounted only for 1.74% and 5.2% of the natural N and P levels, respectively, with a fish production of 10,000 tonnes. The upstream Yellow River remained oligotrophic and phosphorus-limited. Results in this study proved that trout cage aquaculture do not necessarily cause nitrogen, phosphorus and N:P ratio changes even in oligotrophic waters. Phosphorus should be considered first when identifying priority nitrogen and phosphorus sources and the corresponding control measures in waters with high N:P ratio.