Cargando…
A machine-learning framework for robust and reliable prediction of short- and long-term treatment response in initially antipsychotic-naïve schizophrenia patients based on multimodal neuropsychiatric data
The reproducibility of machine-learning analyses in computational psychiatry is a growing concern. In a multimodal neuropsychiatric dataset of antipsychotic-naïve, first-episode schizophrenia patients, we discuss a workflow aimed at reducing bias and overfitting by invoking simulated data in the des...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7417553/ https://www.ncbi.nlm.nih.gov/pubmed/32778656 http://dx.doi.org/10.1038/s41398-020-00962-8 |
_version_ | 1783569519207251968 |
---|---|
author | Ambrosen, Karen S. Skjerbæk, Martin W. Foldager, Jonathan Axelsen, Martin C. Bak, Nikolaj Arvastson, Lars Christensen, Søren R. Johansen, Louise B. Raghava, Jayachandra M. Oranje, Bob Rostrup, Egill Nielsen, Mette Ø. Osler, Merete Fagerlund, Birgitte Pantelis, Christos Kinon, Bruce J. Glenthøj, Birte Y. Hansen, Lars K. Ebdrup, Bjørn H. |
author_facet | Ambrosen, Karen S. Skjerbæk, Martin W. Foldager, Jonathan Axelsen, Martin C. Bak, Nikolaj Arvastson, Lars Christensen, Søren R. Johansen, Louise B. Raghava, Jayachandra M. Oranje, Bob Rostrup, Egill Nielsen, Mette Ø. Osler, Merete Fagerlund, Birgitte Pantelis, Christos Kinon, Bruce J. Glenthøj, Birte Y. Hansen, Lars K. Ebdrup, Bjørn H. |
author_sort | Ambrosen, Karen S. |
collection | PubMed |
description | The reproducibility of machine-learning analyses in computational psychiatry is a growing concern. In a multimodal neuropsychiatric dataset of antipsychotic-naïve, first-episode schizophrenia patients, we discuss a workflow aimed at reducing bias and overfitting by invoking simulated data in the design process and analysis in two independent machine-learning approaches, one based on a single algorithm and the other incorporating an ensemble of algorithms. We aimed to (1) classify patients from controls to establish the framework, (2) predict short- and long-term treatment response, and (3) validate the methodological framework. We included 138 antipsychotic-naïve, first-episode schizophrenia patients with data on psychopathology, cognition, electrophysiology, and structural magnetic resonance imaging (MRI). Perinatal data and long-term outcome measures were obtained from Danish registers. Short-term treatment response was defined as change in Positive And Negative Syndrome Score (PANSS) after the initial antipsychotic treatment period. Baseline diagnostic classification algorithms also included data from 151 matched controls. Both approaches significantly classified patients from healthy controls with a balanced accuracy of 63.8% and 64.2%, respectively. Post-hoc analyses showed that the classification primarily was driven by the cognitive data. Neither approach predicted short- nor long-term treatment response. Validation of the framework showed that choice of algorithm and parameter settings in the real data was successfully guided by results from the simulated data. In conclusion, this novel approach holds promise as an important step to minimize bias and obtain reliable results with modest sample sizes when independent replication samples are not available. |
format | Online Article Text |
id | pubmed-7417553 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-74175532020-08-17 A machine-learning framework for robust and reliable prediction of short- and long-term treatment response in initially antipsychotic-naïve schizophrenia patients based on multimodal neuropsychiatric data Ambrosen, Karen S. Skjerbæk, Martin W. Foldager, Jonathan Axelsen, Martin C. Bak, Nikolaj Arvastson, Lars Christensen, Søren R. Johansen, Louise B. Raghava, Jayachandra M. Oranje, Bob Rostrup, Egill Nielsen, Mette Ø. Osler, Merete Fagerlund, Birgitte Pantelis, Christos Kinon, Bruce J. Glenthøj, Birte Y. Hansen, Lars K. Ebdrup, Bjørn H. Transl Psychiatry Article The reproducibility of machine-learning analyses in computational psychiatry is a growing concern. In a multimodal neuropsychiatric dataset of antipsychotic-naïve, first-episode schizophrenia patients, we discuss a workflow aimed at reducing bias and overfitting by invoking simulated data in the design process and analysis in two independent machine-learning approaches, one based on a single algorithm and the other incorporating an ensemble of algorithms. We aimed to (1) classify patients from controls to establish the framework, (2) predict short- and long-term treatment response, and (3) validate the methodological framework. We included 138 antipsychotic-naïve, first-episode schizophrenia patients with data on psychopathology, cognition, electrophysiology, and structural magnetic resonance imaging (MRI). Perinatal data and long-term outcome measures were obtained from Danish registers. Short-term treatment response was defined as change in Positive And Negative Syndrome Score (PANSS) after the initial antipsychotic treatment period. Baseline diagnostic classification algorithms also included data from 151 matched controls. Both approaches significantly classified patients from healthy controls with a balanced accuracy of 63.8% and 64.2%, respectively. Post-hoc analyses showed that the classification primarily was driven by the cognitive data. Neither approach predicted short- nor long-term treatment response. Validation of the framework showed that choice of algorithm and parameter settings in the real data was successfully guided by results from the simulated data. In conclusion, this novel approach holds promise as an important step to minimize bias and obtain reliable results with modest sample sizes when independent replication samples are not available. Nature Publishing Group UK 2020-08-10 /pmc/articles/PMC7417553/ /pubmed/32778656 http://dx.doi.org/10.1038/s41398-020-00962-8 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Ambrosen, Karen S. Skjerbæk, Martin W. Foldager, Jonathan Axelsen, Martin C. Bak, Nikolaj Arvastson, Lars Christensen, Søren R. Johansen, Louise B. Raghava, Jayachandra M. Oranje, Bob Rostrup, Egill Nielsen, Mette Ø. Osler, Merete Fagerlund, Birgitte Pantelis, Christos Kinon, Bruce J. Glenthøj, Birte Y. Hansen, Lars K. Ebdrup, Bjørn H. A machine-learning framework for robust and reliable prediction of short- and long-term treatment response in initially antipsychotic-naïve schizophrenia patients based on multimodal neuropsychiatric data |
title | A machine-learning framework for robust and reliable prediction of short- and long-term treatment response in initially antipsychotic-naïve schizophrenia patients based on multimodal neuropsychiatric data |
title_full | A machine-learning framework for robust and reliable prediction of short- and long-term treatment response in initially antipsychotic-naïve schizophrenia patients based on multimodal neuropsychiatric data |
title_fullStr | A machine-learning framework for robust and reliable prediction of short- and long-term treatment response in initially antipsychotic-naïve schizophrenia patients based on multimodal neuropsychiatric data |
title_full_unstemmed | A machine-learning framework for robust and reliable prediction of short- and long-term treatment response in initially antipsychotic-naïve schizophrenia patients based on multimodal neuropsychiatric data |
title_short | A machine-learning framework for robust and reliable prediction of short- and long-term treatment response in initially antipsychotic-naïve schizophrenia patients based on multimodal neuropsychiatric data |
title_sort | machine-learning framework for robust and reliable prediction of short- and long-term treatment response in initially antipsychotic-naïve schizophrenia patients based on multimodal neuropsychiatric data |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7417553/ https://www.ncbi.nlm.nih.gov/pubmed/32778656 http://dx.doi.org/10.1038/s41398-020-00962-8 |
work_keys_str_mv | AT ambrosenkarens amachinelearningframeworkforrobustandreliablepredictionofshortandlongtermtreatmentresponseininitiallyantipsychoticnaiveschizophreniapatientsbasedonmultimodalneuropsychiatricdata AT skjerbækmartinw amachinelearningframeworkforrobustandreliablepredictionofshortandlongtermtreatmentresponseininitiallyantipsychoticnaiveschizophreniapatientsbasedonmultimodalneuropsychiatricdata AT foldagerjonathan amachinelearningframeworkforrobustandreliablepredictionofshortandlongtermtreatmentresponseininitiallyantipsychoticnaiveschizophreniapatientsbasedonmultimodalneuropsychiatricdata AT axelsenmartinc amachinelearningframeworkforrobustandreliablepredictionofshortandlongtermtreatmentresponseininitiallyantipsychoticnaiveschizophreniapatientsbasedonmultimodalneuropsychiatricdata AT baknikolaj amachinelearningframeworkforrobustandreliablepredictionofshortandlongtermtreatmentresponseininitiallyantipsychoticnaiveschizophreniapatientsbasedonmultimodalneuropsychiatricdata AT arvastsonlars amachinelearningframeworkforrobustandreliablepredictionofshortandlongtermtreatmentresponseininitiallyantipsychoticnaiveschizophreniapatientsbasedonmultimodalneuropsychiatricdata AT christensensørenr amachinelearningframeworkforrobustandreliablepredictionofshortandlongtermtreatmentresponseininitiallyantipsychoticnaiveschizophreniapatientsbasedonmultimodalneuropsychiatricdata AT johansenlouiseb amachinelearningframeworkforrobustandreliablepredictionofshortandlongtermtreatmentresponseininitiallyantipsychoticnaiveschizophreniapatientsbasedonmultimodalneuropsychiatricdata AT raghavajayachandram amachinelearningframeworkforrobustandreliablepredictionofshortandlongtermtreatmentresponseininitiallyantipsychoticnaiveschizophreniapatientsbasedonmultimodalneuropsychiatricdata AT oranjebob amachinelearningframeworkforrobustandreliablepredictionofshortandlongtermtreatmentresponseininitiallyantipsychoticnaiveschizophreniapatientsbasedonmultimodalneuropsychiatricdata AT rostrupegill amachinelearningframeworkforrobustandreliablepredictionofshortandlongtermtreatmentresponseininitiallyantipsychoticnaiveschizophreniapatientsbasedonmultimodalneuropsychiatricdata AT nielsenmetteø amachinelearningframeworkforrobustandreliablepredictionofshortandlongtermtreatmentresponseininitiallyantipsychoticnaiveschizophreniapatientsbasedonmultimodalneuropsychiatricdata AT oslermerete amachinelearningframeworkforrobustandreliablepredictionofshortandlongtermtreatmentresponseininitiallyantipsychoticnaiveschizophreniapatientsbasedonmultimodalneuropsychiatricdata AT fagerlundbirgitte amachinelearningframeworkforrobustandreliablepredictionofshortandlongtermtreatmentresponseininitiallyantipsychoticnaiveschizophreniapatientsbasedonmultimodalneuropsychiatricdata AT pantelischristos amachinelearningframeworkforrobustandreliablepredictionofshortandlongtermtreatmentresponseininitiallyantipsychoticnaiveschizophreniapatientsbasedonmultimodalneuropsychiatricdata AT kinonbrucej amachinelearningframeworkforrobustandreliablepredictionofshortandlongtermtreatmentresponseininitiallyantipsychoticnaiveschizophreniapatientsbasedonmultimodalneuropsychiatricdata AT glenthøjbirtey amachinelearningframeworkforrobustandreliablepredictionofshortandlongtermtreatmentresponseininitiallyantipsychoticnaiveschizophreniapatientsbasedonmultimodalneuropsychiatricdata AT hansenlarsk amachinelearningframeworkforrobustandreliablepredictionofshortandlongtermtreatmentresponseininitiallyantipsychoticnaiveschizophreniapatientsbasedonmultimodalneuropsychiatricdata AT ebdrupbjørnh amachinelearningframeworkforrobustandreliablepredictionofshortandlongtermtreatmentresponseininitiallyantipsychoticnaiveschizophreniapatientsbasedonmultimodalneuropsychiatricdata AT ambrosenkarens machinelearningframeworkforrobustandreliablepredictionofshortandlongtermtreatmentresponseininitiallyantipsychoticnaiveschizophreniapatientsbasedonmultimodalneuropsychiatricdata AT skjerbækmartinw machinelearningframeworkforrobustandreliablepredictionofshortandlongtermtreatmentresponseininitiallyantipsychoticnaiveschizophreniapatientsbasedonmultimodalneuropsychiatricdata AT foldagerjonathan machinelearningframeworkforrobustandreliablepredictionofshortandlongtermtreatmentresponseininitiallyantipsychoticnaiveschizophreniapatientsbasedonmultimodalneuropsychiatricdata AT axelsenmartinc machinelearningframeworkforrobustandreliablepredictionofshortandlongtermtreatmentresponseininitiallyantipsychoticnaiveschizophreniapatientsbasedonmultimodalneuropsychiatricdata AT baknikolaj machinelearningframeworkforrobustandreliablepredictionofshortandlongtermtreatmentresponseininitiallyantipsychoticnaiveschizophreniapatientsbasedonmultimodalneuropsychiatricdata AT arvastsonlars machinelearningframeworkforrobustandreliablepredictionofshortandlongtermtreatmentresponseininitiallyantipsychoticnaiveschizophreniapatientsbasedonmultimodalneuropsychiatricdata AT christensensørenr machinelearningframeworkforrobustandreliablepredictionofshortandlongtermtreatmentresponseininitiallyantipsychoticnaiveschizophreniapatientsbasedonmultimodalneuropsychiatricdata AT johansenlouiseb machinelearningframeworkforrobustandreliablepredictionofshortandlongtermtreatmentresponseininitiallyantipsychoticnaiveschizophreniapatientsbasedonmultimodalneuropsychiatricdata AT raghavajayachandram machinelearningframeworkforrobustandreliablepredictionofshortandlongtermtreatmentresponseininitiallyantipsychoticnaiveschizophreniapatientsbasedonmultimodalneuropsychiatricdata AT oranjebob machinelearningframeworkforrobustandreliablepredictionofshortandlongtermtreatmentresponseininitiallyantipsychoticnaiveschizophreniapatientsbasedonmultimodalneuropsychiatricdata AT rostrupegill machinelearningframeworkforrobustandreliablepredictionofshortandlongtermtreatmentresponseininitiallyantipsychoticnaiveschizophreniapatientsbasedonmultimodalneuropsychiatricdata AT nielsenmetteø machinelearningframeworkforrobustandreliablepredictionofshortandlongtermtreatmentresponseininitiallyantipsychoticnaiveschizophreniapatientsbasedonmultimodalneuropsychiatricdata AT oslermerete machinelearningframeworkforrobustandreliablepredictionofshortandlongtermtreatmentresponseininitiallyantipsychoticnaiveschizophreniapatientsbasedonmultimodalneuropsychiatricdata AT fagerlundbirgitte machinelearningframeworkforrobustandreliablepredictionofshortandlongtermtreatmentresponseininitiallyantipsychoticnaiveschizophreniapatientsbasedonmultimodalneuropsychiatricdata AT pantelischristos machinelearningframeworkforrobustandreliablepredictionofshortandlongtermtreatmentresponseininitiallyantipsychoticnaiveschizophreniapatientsbasedonmultimodalneuropsychiatricdata AT kinonbrucej machinelearningframeworkforrobustandreliablepredictionofshortandlongtermtreatmentresponseininitiallyantipsychoticnaiveschizophreniapatientsbasedonmultimodalneuropsychiatricdata AT glenthøjbirtey machinelearningframeworkforrobustandreliablepredictionofshortandlongtermtreatmentresponseininitiallyantipsychoticnaiveschizophreniapatientsbasedonmultimodalneuropsychiatricdata AT hansenlarsk machinelearningframeworkforrobustandreliablepredictionofshortandlongtermtreatmentresponseininitiallyantipsychoticnaiveschizophreniapatientsbasedonmultimodalneuropsychiatricdata AT ebdrupbjørnh machinelearningframeworkforrobustandreliablepredictionofshortandlongtermtreatmentresponseininitiallyantipsychoticnaiveschizophreniapatientsbasedonmultimodalneuropsychiatricdata |