Cargando…
A comparative analysis of artificial neural networks and wavelet hybrid approaches to long-term toxic heavy metal prediction
The occurrence of toxic metals in the aquatic environment is as caused by a variety of contaminations which makes difficulty in the concentration prediction. In this study, conventional methods of back-propagation neural network (BPNN) and nonlinear autoregressive network with exogenous inputs (NARX...
Autores principales: | Li, Peifeng, Hua, Pei, Gui, Dongwei, Niu, Jie, Pei, Peng, Zhang, Jin, Krebs, Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7417571/ https://www.ncbi.nlm.nih.gov/pubmed/32778720 http://dx.doi.org/10.1038/s41598-020-70438-8 |
Ejemplares similares
-
Classification of Sputum Sounds Using Artificial Neural Network and Wavelet Transform
por: Shi, Yan, et al.
Publicado: (2018) -
Influence of surface properties and antecedent environmental conditions on particulate-associated metals in surface runoff
por: Wang, Zhenyu, et al.
Publicado: (2020) -
Synergistic and concentration-dependent toxicity of multiple heavy metals compared with single heavy metals in Conocarpus lancifolius
por: Redha, Amina, et al.
Publicado: (2021) -
Forecasting East Asian Indices Futures via a Novel Hybrid of Wavelet-PCA Denoising and Artificial Neural Network Models
por: Chan Phooi M’ng, Jacinta, et al.
Publicado: (2016) -
The systemic toxicity of heavy metal mixtures in rats
por: Fiati Kenston, Samuel Selorm, et al.
Publicado: (2018)