Cargando…
Sparse MR Image Reconstruction Considering Rician Noise Models: A CNN Approach
Compressive sensing (CS) provides a potential platform for acquiring slow and sequential data, as in magnetic resonance (MR) imaging. However, CS requires high computational time for reconstructing MR images from sparse k-space data, which restricts its usage for high speed online reconstruction and...
Autores principales: | Manimala, M. V. R., Dhanunjaya Naidu, C., Giri Prasad, M. N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7417787/ https://www.ncbi.nlm.nih.gov/pubmed/32836885 http://dx.doi.org/10.1007/s11277-020-07725-0 |
Ejemplares similares
-
Brain MR image denoising for Rician noise using pre-smooth non-local means filter
por: Yang, Jian, et al.
Publicado: (2015) -
A spatially variant high-order variational model for Rician noise removal
por: Phan, Tran Dang Khoa
Publicado: (2023) -
Bayesian Rician Regression for Neuroimaging
por: Wegmann, Bertil, et al.
Publicado: (2017) -
An enhanced adaptive non-local means algorithm for Rician noise reduction in magnetic resonance brain images
por: Chen, Kaixin, et al.
Publicado: (2020) -
MAGORINO: Magnitude‐only fat fraction and R(*)
(2) estimation with Rician noise modeling
por: Bray, Timothy J. P., et al.
Publicado: (2022)