Cargando…

Tetrandrine partially reverses multidrug resistance of human laryngeal cancer cells

OBJECTIVE: Studies have demonstrated that tetrandrine reverses multidrug resistance (MDR) in animal models or cell lines derived from multiple cancer types. We examined the potential MDR reversal activity of tetrandrine in a multidrug-resistant variant of a human laryngeal cancer Hep-2 cell line and...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Yachun, Li, Dongjie, Wang, Ping, Zhu, Wei, Yin, Wanzhong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7418264/
https://www.ncbi.nlm.nih.gov/pubmed/32776811
http://dx.doi.org/10.1177/0300060520944706
Descripción
Sumario:OBJECTIVE: Studies have demonstrated that tetrandrine reverses multidrug resistance (MDR) in animal models or cell lines derived from multiple cancer types. We examined the potential MDR reversal activity of tetrandrine in a multidrug-resistant variant of a human laryngeal cancer Hep-2 cell line and explored potential mechanisms involved. METHODS: We developed the multidrug-resistant variant cell line (Hep-2/v) by exposing Hep-2 cells to stepwise increasing concentrations of vincristine (VCR). After Hep-2 or Hep-2/v cells were treated with tetrandrine (2.52 µg/mL), MDR was measured by MTT assay, rhodamine 123 retention was measured by flow cytometry, and mRNA and protein expression of multidrug resistance 1 (MDR1), regulator of G-protein signaling 10 (RGS10), high-temperature requirement protein A1 (HTRA1), and nuclear protein 1 (NUPR1) were detected by real-time reverse transcription-PCR and western blotting, respectively. RESULTS: Tetrandrine significantly lowered the half-maximal inhibitory concentration (IC(50)) of VCR in Hep-2/v cells, resulting in a 2.22-fold reversal of MDR. Treatment with tetrandrine increased rhodamine 123 retention, downregulated the mRNA and protein expression of MDR1 and RGS10, and upregulated expression of HTRA1 in Hep-2/v cells. CONCLUSION: We showed that tetrandrine exerts anti-MDR activity in Hep-2/v cells, possibly by inhibiting MDR1 overexpression-mediated drug efflux and by altering expression of HTRA1 and RGS10.