Cargando…
Passive, yet not inactive: robotic exoskeleton walking increases cortical activation dependent on task
BACKGROUND: Experimental designs using surrogate gait-like movements, such as in functional magnetic resonance imaging (MRI), cannot fully capture the cortical activation associated with overground gait. Overground gait in a robotic exoskeleton may be an ideal tool to generate controlled sensorimoto...
Autores principales: | Peters, Sue, Lim, Shannon B., Louie, Dennis R., Yang, Chieh-ling, Eng, Janice J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7418323/ https://www.ncbi.nlm.nih.gov/pubmed/32778109 http://dx.doi.org/10.1186/s12984-020-00739-6 |
Ejemplares similares
-
Powered robotic exoskeletons in post-stroke rehabilitation of gait: a scoping review
por: Louie, Dennis R., et al.
Publicado: (2016) -
Frontal, Sensorimotor, and Posterior Parietal Regions Are Involved in Dual-Task Walking After Stroke
por: Lim, Shannon B., et al.
Publicado: (2022) -
Brain activity during real-time walking and with walking interventions after stroke: a systematic review
por: Lim, Shannon B., et al.
Publicado: (2021) -
Gait speed using powered robotic exoskeletons after spinal cord injury: a systematic review and correlational study
por: Louie, Dennis R., et al.
Publicado: (2015) -
Passive-elastic knee-ankle exoskeleton reduces the metabolic cost of walking
por: Etenzi, Ettore, et al.
Publicado: (2020)