Cargando…
Viable SARS-CoV-2 in the air of a hospital room with COVID-19 patients
BACKGROUND: There currently is substantial controversy about the role played by SARS-CoV-2 in aerosols in disease transmission, due in part to detections of viral RNA but failures to isolate viable virus from clinically generated aerosols. METHODS: Air samples were collected in the room of two COVID...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7418726/ https://www.ncbi.nlm.nih.gov/pubmed/32793914 http://dx.doi.org/10.1101/2020.08.03.20167395 |
Sumario: | BACKGROUND: There currently is substantial controversy about the role played by SARS-CoV-2 in aerosols in disease transmission, due in part to detections of viral RNA but failures to isolate viable virus from clinically generated aerosols. METHODS: Air samples were collected in the room of two COVID-19 patients, one of whom had an active respiratory infection with a nasopharyngeal (NP) swab positive for SARS-CoV-2 by RT-qPCR. By using VIVAS air samplers that operate on a gentle water-vapor condensation principle, material was collected from room air and subjected to RT-qPCR and virus culture. The genomes of the SARS-CoV-2 collected from the air and of virus isolated in cell culture from air sampling and from a NP swab from a newly admitted patient in the room were sequenced. FINDINGS: Viable virus was isolated from air samples collected 2 to 4.8m away from the patients. The genome sequence of the SARS-CoV-2 strain isolated from the material collected by the air samplers was identical to that isolated from the NP swab from the patient with an active infection. Estimates of viable viral concentrations ranged from 6 to 74 TCID(50) units/L of air. INTERPRETATION: Patients with respiratory manifestations of COVID-19 produce aerosols in the absence of aerosol-generating procedures that contain viable SARS-CoV-2, and these aerosols may serve as a source of transmission of the virus. FUNDING: Partly funded by Grant No. 2030844 from the National Science Foundation and by award 1R43ES030649 from the National Institute of Environmental Health Sciences of the National Institutes of Health, and by funds made available by the University of Florida Emerging Pathogens Institute and the Office of the Dean, University of Florida College of Medicine. |
---|