Cargando…
Ontology-driven weak supervision for clinical entity classification in electronic health records
In the electronic health record, using clinical notes to identify entities such as disorders and their temporality (e.g. the order of an event relative to a time index) can inform many important analyses. However, creating training data for clinical entity tasks is time consuming and sharing labeled...
Autores principales: | Fries, Jason A., Steinberg, Ethan, Khattar, Saelig, Fleming, Scott L., Posada, Jose, Callahan, Alison, Shah, Nigam H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cornell University
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7418750/ https://www.ncbi.nlm.nih.gov/pubmed/32793768 |
Ejemplares similares
-
Ontology-driven weak supervision for clinical entity classification in electronic health records
por: Fries, Jason A., et al.
Publicado: (2021) -
Ontology-driven and weakly supervised rare disease identification from clinical notes
por: Dong, Hang, et al.
Publicado: (2023) -
The shaky foundations of large language models and foundation models for electronic health records
por: Wornow, Michael, et al.
Publicado: (2023) -
ACE: the Advanced Cohort Engine for searching longitudinal patient records
por: Callahan, Alison, et al.
Publicado: (2021) -
Estimating the efficacy of symptom-based screening for COVID-19
por: Callahan, Alison, et al.
Publicado: (2020)