Cargando…
Global cataloguing of variations in untranslated regions of viral genome and prediction of key host RNA binding protein-microRNA interactions modulating genome stability in SARS-CoV-2
BACKGROUND: The world is going through the critical phase of COVID-19 pandemic, caused by human coronavirus, SARS-CoV-2. Worldwide concerted effort to identify viral genomic changes across different sub-types has identified several strong changes in the coding region. However, there have not been ma...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7418985/ https://www.ncbi.nlm.nih.gov/pubmed/32780783 http://dx.doi.org/10.1371/journal.pone.0237559 |
_version_ | 1783569792866713600 |
---|---|
author | Mukherjee, Moumita Goswami, Srikanta |
author_facet | Mukherjee, Moumita Goswami, Srikanta |
author_sort | Mukherjee, Moumita |
collection | PubMed |
description | BACKGROUND: The world is going through the critical phase of COVID-19 pandemic, caused by human coronavirus, SARS-CoV-2. Worldwide concerted effort to identify viral genomic changes across different sub-types has identified several strong changes in the coding region. However, there have not been many studies focusing on the variations in the 5’ and 3’ untranslated regions and their consequences. Considering the possible importance of these regions in host mediated regulation of viral RNA genome, we wanted to explore the phenomenon. METHODS: To have an idea of the global changes in 5’ and 3’-UTR sequences, we downloaded 8595 complete and high-coverage SARS-CoV-2 genome sequence information from human host in FASTA format from Global Initiative on Sharing All Influenza Data (GISAID) from 15 different geographical regions. Next, we aligned them using Clustal Omega software and investigated the UTR variants. We also looked at the putative host RNA binding protein (RBP) and microRNA binding sites in these regions by ‘RBPmap’ and ‘RNA22 v2’ respectively. Expression status of selected RBPs and microRNAs were checked in lungs tissue. RESULTS: We identified 28 unique variants in SARS-CoV-2 UTR region based on a minimum variant percentage cut-off of 0.5. Along with 241C>T change the important 5’-UTR change identified was 187A>G, while 29734G>C, 29742G>A/T and 29774C>T were the most familiar variants of 3’UTR among most of the continents. Furthermore, we found that despite the variations in the UTR regions, binding of host RBP to them remains mostly unaltered, which further influenced the functioning of specific miRNAs. CONCLUSION: Our results, shows for the first time in SARS-Cov-2 infection, a possible cross-talk between host RBPs-miRNAs and viral UTR variants, which ultimately could explain the mechanism of escaping host RNA decay machinery by the virus. The knowledge might be helpful in developing anti-viral compounds in future. |
format | Online Article Text |
id | pubmed-7418985 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-74189852020-08-19 Global cataloguing of variations in untranslated regions of viral genome and prediction of key host RNA binding protein-microRNA interactions modulating genome stability in SARS-CoV-2 Mukherjee, Moumita Goswami, Srikanta PLoS One Research Article BACKGROUND: The world is going through the critical phase of COVID-19 pandemic, caused by human coronavirus, SARS-CoV-2. Worldwide concerted effort to identify viral genomic changes across different sub-types has identified several strong changes in the coding region. However, there have not been many studies focusing on the variations in the 5’ and 3’ untranslated regions and their consequences. Considering the possible importance of these regions in host mediated regulation of viral RNA genome, we wanted to explore the phenomenon. METHODS: To have an idea of the global changes in 5’ and 3’-UTR sequences, we downloaded 8595 complete and high-coverage SARS-CoV-2 genome sequence information from human host in FASTA format from Global Initiative on Sharing All Influenza Data (GISAID) from 15 different geographical regions. Next, we aligned them using Clustal Omega software and investigated the UTR variants. We also looked at the putative host RNA binding protein (RBP) and microRNA binding sites in these regions by ‘RBPmap’ and ‘RNA22 v2’ respectively. Expression status of selected RBPs and microRNAs were checked in lungs tissue. RESULTS: We identified 28 unique variants in SARS-CoV-2 UTR region based on a minimum variant percentage cut-off of 0.5. Along with 241C>T change the important 5’-UTR change identified was 187A>G, while 29734G>C, 29742G>A/T and 29774C>T were the most familiar variants of 3’UTR among most of the continents. Furthermore, we found that despite the variations in the UTR regions, binding of host RBP to them remains mostly unaltered, which further influenced the functioning of specific miRNAs. CONCLUSION: Our results, shows for the first time in SARS-Cov-2 infection, a possible cross-talk between host RBPs-miRNAs and viral UTR variants, which ultimately could explain the mechanism of escaping host RNA decay machinery by the virus. The knowledge might be helpful in developing anti-viral compounds in future. Public Library of Science 2020-08-11 /pmc/articles/PMC7418985/ /pubmed/32780783 http://dx.doi.org/10.1371/journal.pone.0237559 Text en © 2020 Mukherjee, Goswami http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Mukherjee, Moumita Goswami, Srikanta Global cataloguing of variations in untranslated regions of viral genome and prediction of key host RNA binding protein-microRNA interactions modulating genome stability in SARS-CoV-2 |
title | Global cataloguing of variations in untranslated regions of viral genome and prediction of key host RNA binding protein-microRNA interactions modulating genome stability in SARS-CoV-2 |
title_full | Global cataloguing of variations in untranslated regions of viral genome and prediction of key host RNA binding protein-microRNA interactions modulating genome stability in SARS-CoV-2 |
title_fullStr | Global cataloguing of variations in untranslated regions of viral genome and prediction of key host RNA binding protein-microRNA interactions modulating genome stability in SARS-CoV-2 |
title_full_unstemmed | Global cataloguing of variations in untranslated regions of viral genome and prediction of key host RNA binding protein-microRNA interactions modulating genome stability in SARS-CoV-2 |
title_short | Global cataloguing of variations in untranslated regions of viral genome and prediction of key host RNA binding protein-microRNA interactions modulating genome stability in SARS-CoV-2 |
title_sort | global cataloguing of variations in untranslated regions of viral genome and prediction of key host rna binding protein-microrna interactions modulating genome stability in sars-cov-2 |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7418985/ https://www.ncbi.nlm.nih.gov/pubmed/32780783 http://dx.doi.org/10.1371/journal.pone.0237559 |
work_keys_str_mv | AT mukherjeemoumita globalcataloguingofvariationsinuntranslatedregionsofviralgenomeandpredictionofkeyhostrnabindingproteinmicrornainteractionsmodulatinggenomestabilityinsarscov2 AT goswamisrikanta globalcataloguingofvariationsinuntranslatedregionsofviralgenomeandpredictionofkeyhostrnabindingproteinmicrornainteractionsmodulatinggenomestabilityinsarscov2 |