Cargando…

Activation by NarL at the Escherichia coli ogt promoter

The Escherichia coli NarX/NarL two-component response-regulator system regulates gene expression in response to nitrate ions and the NarL protein is a global transcription factor, which activates transcript initiation at many target promoters. One such target, the E. coli ogt promoter, which control...

Descripción completa

Detalles Bibliográficos
Autores principales: Ruanto, Patcharawarin, Chismon, David L., Hothersall, Joanne, Godfrey, Rita E., Lee, David J., Busby, Stephen J. W., Browning, Douglas F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Portland Press Ltd. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7419079/
https://www.ncbi.nlm.nih.gov/pubmed/32662815
http://dx.doi.org/10.1042/BCJ20200408
Descripción
Sumario:The Escherichia coli NarX/NarL two-component response-regulator system regulates gene expression in response to nitrate ions and the NarL protein is a global transcription factor, which activates transcript initiation at many target promoters. One such target, the E. coli ogt promoter, which controls the expression of an O(6)-alkylguanine-DNA-alkyltransferase, is dependent on NarL binding to two DNA targets centred at positions −44.5 and −77.5 upstream from the transcript start. Here, we describe ogt promoter derivatives that can be activated solely by NarL binding either at position −44.5 or position −77.5. We show that NarL can also activate the ogt promoter when located at position −67.5. We present data to argue that NarL-dependent activation of transcript initiation at the ogt promoter results from a direct interaction between NarL and a determinant in the C-terminal domain of the RNA polymerase α subunit. Footprinting experiments show that, at the −44.5 promoter, NarL and the C-terminal domain of the RNA polymerase α subunit bind to opposite faces of promoter DNA, suggesting an unusual mechanism of transcription activation. Our work suggests new organisations for activator-dependent transcription at promoters and future applications for biotechnology.