Cargando…
An evolutionary driver of interspersed segmental duplications in primates
BACKGROUND: The complex interspersed pattern of segmental duplications in humans is responsible for rearrangements associated with neurodevelopmental disease, including the emergence of novel genes important in human brain evolution. We investigate the evolution of LCR16a, a putative driver of this...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7419210/ https://www.ncbi.nlm.nih.gov/pubmed/32778141 http://dx.doi.org/10.1186/s13059-020-02074-4 |
_version_ | 1783569834800316416 |
---|---|
author | Cantsilieris, Stuart Sunkin, Susan M. Johnson, Matthew E. Anaclerio, Fabio Huddleston, John Baker, Carl Dougherty, Max L. Underwood, Jason G. Sulovari, Arvis Hsieh, PingHsun Mao, Yafei Catacchio, Claudia Rita Malig, Maika Welch, AnneMarie E. Sorensen, Melanie Munson, Katherine M. Jiang, Weihong Girirajan, Santhosh Ventura, Mario Lamb, Bruce T. Conlon, Ronald A. Eichler, Evan E. |
author_facet | Cantsilieris, Stuart Sunkin, Susan M. Johnson, Matthew E. Anaclerio, Fabio Huddleston, John Baker, Carl Dougherty, Max L. Underwood, Jason G. Sulovari, Arvis Hsieh, PingHsun Mao, Yafei Catacchio, Claudia Rita Malig, Maika Welch, AnneMarie E. Sorensen, Melanie Munson, Katherine M. Jiang, Weihong Girirajan, Santhosh Ventura, Mario Lamb, Bruce T. Conlon, Ronald A. Eichler, Evan E. |
author_sort | Cantsilieris, Stuart |
collection | PubMed |
description | BACKGROUND: The complex interspersed pattern of segmental duplications in humans is responsible for rearrangements associated with neurodevelopmental disease, including the emergence of novel genes important in human brain evolution. We investigate the evolution of LCR16a, a putative driver of this phenomenon that encodes one of the most rapidly evolving human–ape gene families, nuclear pore interacting protein (NPIP). RESULTS: Comparative analysis shows that LCR16a has independently expanded in five primate lineages over the last 35 million years of primate evolution. The expansions are associated with independent lineage-specific segmental duplications flanking LCR16a leading to the emergence of large interspersed duplication blocks at non-orthologous chromosomal locations in each primate lineage. The intron-exon structure of the NPIP gene family has changed dramatically throughout primate evolution with different branches showing characteristic gene models yet maintaining an open reading frame. In the African ape lineage, we detect signatures of positive selection that occurred after a transition to more ubiquitous expression among great ape tissues when compared to Old World and New World monkeys. Mouse transgenic experiments from baboon and human genomic loci confirm these expression differences and suggest that the broader ape expression pattern arose due to mutational changes that emerged in cis. CONCLUSIONS: LCR16a promotes serial interspersed duplications and creates hotspots of genomic instability that appear to be an ancient property of primate genomes. Dramatic changes to NPIP gene structure and altered tissue expression preceded major bouts of positive selection in the African ape lineage, suggestive of a gene undergoing strong adaptive evolution. |
format | Online Article Text |
id | pubmed-7419210 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-74192102020-08-12 An evolutionary driver of interspersed segmental duplications in primates Cantsilieris, Stuart Sunkin, Susan M. Johnson, Matthew E. Anaclerio, Fabio Huddleston, John Baker, Carl Dougherty, Max L. Underwood, Jason G. Sulovari, Arvis Hsieh, PingHsun Mao, Yafei Catacchio, Claudia Rita Malig, Maika Welch, AnneMarie E. Sorensen, Melanie Munson, Katherine M. Jiang, Weihong Girirajan, Santhosh Ventura, Mario Lamb, Bruce T. Conlon, Ronald A. Eichler, Evan E. Genome Biol Research BACKGROUND: The complex interspersed pattern of segmental duplications in humans is responsible for rearrangements associated with neurodevelopmental disease, including the emergence of novel genes important in human brain evolution. We investigate the evolution of LCR16a, a putative driver of this phenomenon that encodes one of the most rapidly evolving human–ape gene families, nuclear pore interacting protein (NPIP). RESULTS: Comparative analysis shows that LCR16a has independently expanded in five primate lineages over the last 35 million years of primate evolution. The expansions are associated with independent lineage-specific segmental duplications flanking LCR16a leading to the emergence of large interspersed duplication blocks at non-orthologous chromosomal locations in each primate lineage. The intron-exon structure of the NPIP gene family has changed dramatically throughout primate evolution with different branches showing characteristic gene models yet maintaining an open reading frame. In the African ape lineage, we detect signatures of positive selection that occurred after a transition to more ubiquitous expression among great ape tissues when compared to Old World and New World monkeys. Mouse transgenic experiments from baboon and human genomic loci confirm these expression differences and suggest that the broader ape expression pattern arose due to mutational changes that emerged in cis. CONCLUSIONS: LCR16a promotes serial interspersed duplications and creates hotspots of genomic instability that appear to be an ancient property of primate genomes. Dramatic changes to NPIP gene structure and altered tissue expression preceded major bouts of positive selection in the African ape lineage, suggestive of a gene undergoing strong adaptive evolution. BioMed Central 2020-08-10 /pmc/articles/PMC7419210/ /pubmed/32778141 http://dx.doi.org/10.1186/s13059-020-02074-4 Text en © The Author(s) 2020 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Cantsilieris, Stuart Sunkin, Susan M. Johnson, Matthew E. Anaclerio, Fabio Huddleston, John Baker, Carl Dougherty, Max L. Underwood, Jason G. Sulovari, Arvis Hsieh, PingHsun Mao, Yafei Catacchio, Claudia Rita Malig, Maika Welch, AnneMarie E. Sorensen, Melanie Munson, Katherine M. Jiang, Weihong Girirajan, Santhosh Ventura, Mario Lamb, Bruce T. Conlon, Ronald A. Eichler, Evan E. An evolutionary driver of interspersed segmental duplications in primates |
title | An evolutionary driver of interspersed segmental duplications in primates |
title_full | An evolutionary driver of interspersed segmental duplications in primates |
title_fullStr | An evolutionary driver of interspersed segmental duplications in primates |
title_full_unstemmed | An evolutionary driver of interspersed segmental duplications in primates |
title_short | An evolutionary driver of interspersed segmental duplications in primates |
title_sort | evolutionary driver of interspersed segmental duplications in primates |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7419210/ https://www.ncbi.nlm.nih.gov/pubmed/32778141 http://dx.doi.org/10.1186/s13059-020-02074-4 |
work_keys_str_mv | AT cantsilierisstuart anevolutionarydriverofinterspersedsegmentalduplicationsinprimates AT sunkinsusanm anevolutionarydriverofinterspersedsegmentalduplicationsinprimates AT johnsonmatthewe anevolutionarydriverofinterspersedsegmentalduplicationsinprimates AT anacleriofabio anevolutionarydriverofinterspersedsegmentalduplicationsinprimates AT huddlestonjohn anevolutionarydriverofinterspersedsegmentalduplicationsinprimates AT bakercarl anevolutionarydriverofinterspersedsegmentalduplicationsinprimates AT doughertymaxl anevolutionarydriverofinterspersedsegmentalduplicationsinprimates AT underwoodjasong anevolutionarydriverofinterspersedsegmentalduplicationsinprimates AT sulovariarvis anevolutionarydriverofinterspersedsegmentalduplicationsinprimates AT hsiehpinghsun anevolutionarydriverofinterspersedsegmentalduplicationsinprimates AT maoyafei anevolutionarydriverofinterspersedsegmentalduplicationsinprimates AT catacchioclaudiarita anevolutionarydriverofinterspersedsegmentalduplicationsinprimates AT maligmaika anevolutionarydriverofinterspersedsegmentalduplicationsinprimates AT welchannemariee anevolutionarydriverofinterspersedsegmentalduplicationsinprimates AT sorensenmelanie anevolutionarydriverofinterspersedsegmentalduplicationsinprimates AT munsonkatherinem anevolutionarydriverofinterspersedsegmentalduplicationsinprimates AT jiangweihong anevolutionarydriverofinterspersedsegmentalduplicationsinprimates AT girirajansanthosh anevolutionarydriverofinterspersedsegmentalduplicationsinprimates AT venturamario anevolutionarydriverofinterspersedsegmentalduplicationsinprimates AT lambbrucet anevolutionarydriverofinterspersedsegmentalduplicationsinprimates AT conlonronalda anevolutionarydriverofinterspersedsegmentalduplicationsinprimates AT eichlerevane anevolutionarydriverofinterspersedsegmentalduplicationsinprimates AT cantsilierisstuart evolutionarydriverofinterspersedsegmentalduplicationsinprimates AT sunkinsusanm evolutionarydriverofinterspersedsegmentalduplicationsinprimates AT johnsonmatthewe evolutionarydriverofinterspersedsegmentalduplicationsinprimates AT anacleriofabio evolutionarydriverofinterspersedsegmentalduplicationsinprimates AT huddlestonjohn evolutionarydriverofinterspersedsegmentalduplicationsinprimates AT bakercarl evolutionarydriverofinterspersedsegmentalduplicationsinprimates AT doughertymaxl evolutionarydriverofinterspersedsegmentalduplicationsinprimates AT underwoodjasong evolutionarydriverofinterspersedsegmentalduplicationsinprimates AT sulovariarvis evolutionarydriverofinterspersedsegmentalduplicationsinprimates AT hsiehpinghsun evolutionarydriverofinterspersedsegmentalduplicationsinprimates AT maoyafei evolutionarydriverofinterspersedsegmentalduplicationsinprimates AT catacchioclaudiarita evolutionarydriverofinterspersedsegmentalduplicationsinprimates AT maligmaika evolutionarydriverofinterspersedsegmentalduplicationsinprimates AT welchannemariee evolutionarydriverofinterspersedsegmentalduplicationsinprimates AT sorensenmelanie evolutionarydriverofinterspersedsegmentalduplicationsinprimates AT munsonkatherinem evolutionarydriverofinterspersedsegmentalduplicationsinprimates AT jiangweihong evolutionarydriverofinterspersedsegmentalduplicationsinprimates AT girirajansanthosh evolutionarydriverofinterspersedsegmentalduplicationsinprimates AT venturamario evolutionarydriverofinterspersedsegmentalduplicationsinprimates AT lambbrucet evolutionarydriverofinterspersedsegmentalduplicationsinprimates AT conlonronalda evolutionarydriverofinterspersedsegmentalduplicationsinprimates AT eichlerevane evolutionarydriverofinterspersedsegmentalduplicationsinprimates |