Cargando…

An evolutionary driver of interspersed segmental duplications in primates

BACKGROUND: The complex interspersed pattern of segmental duplications in humans is responsible for rearrangements associated with neurodevelopmental disease, including the emergence of novel genes important in human brain evolution. We investigate the evolution of LCR16a, a putative driver of this...

Descripción completa

Detalles Bibliográficos
Autores principales: Cantsilieris, Stuart, Sunkin, Susan M., Johnson, Matthew E., Anaclerio, Fabio, Huddleston, John, Baker, Carl, Dougherty, Max L., Underwood, Jason G., Sulovari, Arvis, Hsieh, PingHsun, Mao, Yafei, Catacchio, Claudia Rita, Malig, Maika, Welch, AnneMarie E., Sorensen, Melanie, Munson, Katherine M., Jiang, Weihong, Girirajan, Santhosh, Ventura, Mario, Lamb, Bruce T., Conlon, Ronald A., Eichler, Evan E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7419210/
https://www.ncbi.nlm.nih.gov/pubmed/32778141
http://dx.doi.org/10.1186/s13059-020-02074-4
_version_ 1783569834800316416
author Cantsilieris, Stuart
Sunkin, Susan M.
Johnson, Matthew E.
Anaclerio, Fabio
Huddleston, John
Baker, Carl
Dougherty, Max L.
Underwood, Jason G.
Sulovari, Arvis
Hsieh, PingHsun
Mao, Yafei
Catacchio, Claudia Rita
Malig, Maika
Welch, AnneMarie E.
Sorensen, Melanie
Munson, Katherine M.
Jiang, Weihong
Girirajan, Santhosh
Ventura, Mario
Lamb, Bruce T.
Conlon, Ronald A.
Eichler, Evan E.
author_facet Cantsilieris, Stuart
Sunkin, Susan M.
Johnson, Matthew E.
Anaclerio, Fabio
Huddleston, John
Baker, Carl
Dougherty, Max L.
Underwood, Jason G.
Sulovari, Arvis
Hsieh, PingHsun
Mao, Yafei
Catacchio, Claudia Rita
Malig, Maika
Welch, AnneMarie E.
Sorensen, Melanie
Munson, Katherine M.
Jiang, Weihong
Girirajan, Santhosh
Ventura, Mario
Lamb, Bruce T.
Conlon, Ronald A.
Eichler, Evan E.
author_sort Cantsilieris, Stuart
collection PubMed
description BACKGROUND: The complex interspersed pattern of segmental duplications in humans is responsible for rearrangements associated with neurodevelopmental disease, including the emergence of novel genes important in human brain evolution. We investigate the evolution of LCR16a, a putative driver of this phenomenon that encodes one of the most rapidly evolving human–ape gene families, nuclear pore interacting protein (NPIP). RESULTS: Comparative analysis shows that LCR16a has independently expanded in five primate lineages over the last 35 million years of primate evolution. The expansions are associated with independent lineage-specific segmental duplications flanking LCR16a leading to the emergence of large interspersed duplication blocks at non-orthologous chromosomal locations in each primate lineage. The intron-exon structure of the NPIP gene family has changed dramatically throughout primate evolution with different branches showing characteristic gene models yet maintaining an open reading frame. In the African ape lineage, we detect signatures of positive selection that occurred after a transition to more ubiquitous expression among great ape tissues when compared to Old World and New World monkeys. Mouse transgenic experiments from baboon and human genomic loci confirm these expression differences and suggest that the broader ape expression pattern arose due to mutational changes that emerged in cis. CONCLUSIONS: LCR16a promotes serial interspersed duplications and creates hotspots of genomic instability that appear to be an ancient property of primate genomes. Dramatic changes to NPIP gene structure and altered tissue expression preceded major bouts of positive selection in the African ape lineage, suggestive of a gene undergoing strong adaptive evolution.
format Online
Article
Text
id pubmed-7419210
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-74192102020-08-12 An evolutionary driver of interspersed segmental duplications in primates Cantsilieris, Stuart Sunkin, Susan M. Johnson, Matthew E. Anaclerio, Fabio Huddleston, John Baker, Carl Dougherty, Max L. Underwood, Jason G. Sulovari, Arvis Hsieh, PingHsun Mao, Yafei Catacchio, Claudia Rita Malig, Maika Welch, AnneMarie E. Sorensen, Melanie Munson, Katherine M. Jiang, Weihong Girirajan, Santhosh Ventura, Mario Lamb, Bruce T. Conlon, Ronald A. Eichler, Evan E. Genome Biol Research BACKGROUND: The complex interspersed pattern of segmental duplications in humans is responsible for rearrangements associated with neurodevelopmental disease, including the emergence of novel genes important in human brain evolution. We investigate the evolution of LCR16a, a putative driver of this phenomenon that encodes one of the most rapidly evolving human–ape gene families, nuclear pore interacting protein (NPIP). RESULTS: Comparative analysis shows that LCR16a has independently expanded in five primate lineages over the last 35 million years of primate evolution. The expansions are associated with independent lineage-specific segmental duplications flanking LCR16a leading to the emergence of large interspersed duplication blocks at non-orthologous chromosomal locations in each primate lineage. The intron-exon structure of the NPIP gene family has changed dramatically throughout primate evolution with different branches showing characteristic gene models yet maintaining an open reading frame. In the African ape lineage, we detect signatures of positive selection that occurred after a transition to more ubiquitous expression among great ape tissues when compared to Old World and New World monkeys. Mouse transgenic experiments from baboon and human genomic loci confirm these expression differences and suggest that the broader ape expression pattern arose due to mutational changes that emerged in cis. CONCLUSIONS: LCR16a promotes serial interspersed duplications and creates hotspots of genomic instability that appear to be an ancient property of primate genomes. Dramatic changes to NPIP gene structure and altered tissue expression preceded major bouts of positive selection in the African ape lineage, suggestive of a gene undergoing strong adaptive evolution. BioMed Central 2020-08-10 /pmc/articles/PMC7419210/ /pubmed/32778141 http://dx.doi.org/10.1186/s13059-020-02074-4 Text en © The Author(s) 2020 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research
Cantsilieris, Stuart
Sunkin, Susan M.
Johnson, Matthew E.
Anaclerio, Fabio
Huddleston, John
Baker, Carl
Dougherty, Max L.
Underwood, Jason G.
Sulovari, Arvis
Hsieh, PingHsun
Mao, Yafei
Catacchio, Claudia Rita
Malig, Maika
Welch, AnneMarie E.
Sorensen, Melanie
Munson, Katherine M.
Jiang, Weihong
Girirajan, Santhosh
Ventura, Mario
Lamb, Bruce T.
Conlon, Ronald A.
Eichler, Evan E.
An evolutionary driver of interspersed segmental duplications in primates
title An evolutionary driver of interspersed segmental duplications in primates
title_full An evolutionary driver of interspersed segmental duplications in primates
title_fullStr An evolutionary driver of interspersed segmental duplications in primates
title_full_unstemmed An evolutionary driver of interspersed segmental duplications in primates
title_short An evolutionary driver of interspersed segmental duplications in primates
title_sort evolutionary driver of interspersed segmental duplications in primates
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7419210/
https://www.ncbi.nlm.nih.gov/pubmed/32778141
http://dx.doi.org/10.1186/s13059-020-02074-4
work_keys_str_mv AT cantsilierisstuart anevolutionarydriverofinterspersedsegmentalduplicationsinprimates
AT sunkinsusanm anevolutionarydriverofinterspersedsegmentalduplicationsinprimates
AT johnsonmatthewe anevolutionarydriverofinterspersedsegmentalduplicationsinprimates
AT anacleriofabio anevolutionarydriverofinterspersedsegmentalduplicationsinprimates
AT huddlestonjohn anevolutionarydriverofinterspersedsegmentalduplicationsinprimates
AT bakercarl anevolutionarydriverofinterspersedsegmentalduplicationsinprimates
AT doughertymaxl anevolutionarydriverofinterspersedsegmentalduplicationsinprimates
AT underwoodjasong anevolutionarydriverofinterspersedsegmentalduplicationsinprimates
AT sulovariarvis anevolutionarydriverofinterspersedsegmentalduplicationsinprimates
AT hsiehpinghsun anevolutionarydriverofinterspersedsegmentalduplicationsinprimates
AT maoyafei anevolutionarydriverofinterspersedsegmentalduplicationsinprimates
AT catacchioclaudiarita anevolutionarydriverofinterspersedsegmentalduplicationsinprimates
AT maligmaika anevolutionarydriverofinterspersedsegmentalduplicationsinprimates
AT welchannemariee anevolutionarydriverofinterspersedsegmentalduplicationsinprimates
AT sorensenmelanie anevolutionarydriverofinterspersedsegmentalduplicationsinprimates
AT munsonkatherinem anevolutionarydriverofinterspersedsegmentalduplicationsinprimates
AT jiangweihong anevolutionarydriverofinterspersedsegmentalduplicationsinprimates
AT girirajansanthosh anevolutionarydriverofinterspersedsegmentalduplicationsinprimates
AT venturamario anevolutionarydriverofinterspersedsegmentalduplicationsinprimates
AT lambbrucet anevolutionarydriverofinterspersedsegmentalduplicationsinprimates
AT conlonronalda anevolutionarydriverofinterspersedsegmentalduplicationsinprimates
AT eichlerevane anevolutionarydriverofinterspersedsegmentalduplicationsinprimates
AT cantsilierisstuart evolutionarydriverofinterspersedsegmentalduplicationsinprimates
AT sunkinsusanm evolutionarydriverofinterspersedsegmentalduplicationsinprimates
AT johnsonmatthewe evolutionarydriverofinterspersedsegmentalduplicationsinprimates
AT anacleriofabio evolutionarydriverofinterspersedsegmentalduplicationsinprimates
AT huddlestonjohn evolutionarydriverofinterspersedsegmentalduplicationsinprimates
AT bakercarl evolutionarydriverofinterspersedsegmentalduplicationsinprimates
AT doughertymaxl evolutionarydriverofinterspersedsegmentalduplicationsinprimates
AT underwoodjasong evolutionarydriverofinterspersedsegmentalduplicationsinprimates
AT sulovariarvis evolutionarydriverofinterspersedsegmentalduplicationsinprimates
AT hsiehpinghsun evolutionarydriverofinterspersedsegmentalduplicationsinprimates
AT maoyafei evolutionarydriverofinterspersedsegmentalduplicationsinprimates
AT catacchioclaudiarita evolutionarydriverofinterspersedsegmentalduplicationsinprimates
AT maligmaika evolutionarydriverofinterspersedsegmentalduplicationsinprimates
AT welchannemariee evolutionarydriverofinterspersedsegmentalduplicationsinprimates
AT sorensenmelanie evolutionarydriverofinterspersedsegmentalduplicationsinprimates
AT munsonkatherinem evolutionarydriverofinterspersedsegmentalduplicationsinprimates
AT jiangweihong evolutionarydriverofinterspersedsegmentalduplicationsinprimates
AT girirajansanthosh evolutionarydriverofinterspersedsegmentalduplicationsinprimates
AT venturamario evolutionarydriverofinterspersedsegmentalduplicationsinprimates
AT lambbrucet evolutionarydriverofinterspersedsegmentalduplicationsinprimates
AT conlonronalda evolutionarydriverofinterspersedsegmentalduplicationsinprimates
AT eichlerevane evolutionarydriverofinterspersedsegmentalduplicationsinprimates