Cargando…

The local transcriptional regulators SacR1 and SacR2 act as repressors of fructooligosaccharides metabolism in Lactobacillus plantarum

BACKGROUND: In Lactobacillus plantarum, fructooligosaccharides (FOS) metabolism is controlled by both global and local regulatory mechanisms. Although catabolite control protein A has been identified as a global regulator of FOS metabolism, the functions of local regulators remain unclear. This stud...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Chen, Wang, Linlin, Yu, Haiyan, Tian, Huaixiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7419226/
https://www.ncbi.nlm.nih.gov/pubmed/32778113
http://dx.doi.org/10.1186/s12934-020-01403-3
Descripción
Sumario:BACKGROUND: In Lactobacillus plantarum, fructooligosaccharides (FOS) metabolism is controlled by both global and local regulatory mechanisms. Although catabolite control protein A has been identified as a global regulator of FOS metabolism, the functions of local regulators remain unclear. This study aimed to elucidate the roles of two local regulators, SacR1 and SacR2, in the regulation of FOS metabolism in L. plantarum both in vitro and in vivo. RESULTS: The inactivation of sacR1 and sacR2 affected the growth and production of metabolites for strains grown on FOS or glucose, respectively. A reverse transcription-quantitative PCR analysis of one wild-type and two mutant strains (ΔsacR1 and ΔsacR2) of L. plantarum identified SacR1 and SacR2 as repressors of genes relevant to FOS metabolism in the absence of FOS, and these genes could be induced or derepressed by the addition of FOS. The analysis predicted four potential transcription factor binding sites (TFBSs) in the putative promoter regions of two FOS-related clusters. The binding of SacR1 and SacR2 to these TFBSs both in vitro and in vivo was verified using electrophoretic mobility shift assays and chromatin immunoprecipitation, respectively. A consensus sequence of WNNNNNAACGNNTTNNNNNW was deduced for the TFBSs of SacR1 and SacR2. CONCLUSION: Our results identified SacR1 and SacR2 as local repressors for FOS metabolism in L. plantarum. The regulation is achieved by the binding of SacR1 and SacR2 to TFBSs in the promoter regions of FOS-related clusters. The results provide new insights into the complex network regulating oligosaccharide metabolism by lactic acid bacteria. [Image: see text]