Cargando…
Influence of unsaturation of hydrocarbons on the characteristics and carcinogenicity of soot particles
This paper concerns the effect of unsaturation of hydrocarbons (single, double, and triple bonds) on soot particle characteristics (mass, number, and size) and on the carcinogenicity of soot particles. The soot particles were produced from oxygen-free pyrolysis of five hydrocarbons, namely: propane,...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7419260/ https://www.ncbi.nlm.nih.gov/pubmed/32836580 http://dx.doi.org/10.1016/j.jaap.2020.104900 |
_version_ | 1783569845365768192 |
---|---|
author | Dandajeh, Hamisu Adamu Ladommatos, Nicos Hellier, Paul |
author_facet | Dandajeh, Hamisu Adamu Ladommatos, Nicos Hellier, Paul |
author_sort | Dandajeh, Hamisu Adamu |
collection | PubMed |
description | This paper concerns the effect of unsaturation of hydrocarbons (single, double, and triple bonds) on soot particle characteristics (mass, number, and size) and on the carcinogenicity of soot particles. The soot particles were produced from oxygen-free pyrolysis of five hydrocarbons, namely: propane, propylene, ethane, ethylene, and acetylene. The characteristics of soot particles were measured with the aid of a differential mobility spectrometer (Cambustion-DMS-500) and measurement of soot mass concentration was confirmed using gravimetric filter measurements. The soot particle carcinogenicity was estimated from the emission quantities of total polyaromatic hydrocarbons (PAHs) and the toxicity equivalent factor (TEF) of each PAH. Oxygen-free pyrolysis of the hydrocarbon fuels was conducted in a laminar tube reactor within the temperature range of 1050 –1350oC at a constant nitrogen flow rate of 20 L/min and constant fuel flow rate of 1% (vol) on carbon-1 basis. The experimental results showed that increasing unsaturation of fuels from single to double and to triple bonds increased the mass concentration, particle size, number concentration, and carcinogenicity of soot particle notably at the initial temperature of 1050 oC. Increase in the pyrolysis temperature of the tube reactor from 1050 – 1350oC, increased the mass concentration and sizes of the soot particle while the number concentration and carcinogenicity of the soot particle decreased. There was a positive correlation between the soot particle number and the corresponding soot particle carcinogenicity, while a negative correlation was observed between the soot particle mass and size with soot particle carcinogenicity regardless of the pyrolysis temperature examined. The potential implication of these observations is that, low-temperature combustion (LTC) applications, aimed at reducing emissions of soot and NOx, could produce higher soot particle number concentration of higher carcinogenicity. |
format | Online Article Text |
id | pubmed-7419260 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier B.V. |
record_format | MEDLINE/PubMed |
spelling | pubmed-74192602020-08-12 Influence of unsaturation of hydrocarbons on the characteristics and carcinogenicity of soot particles Dandajeh, Hamisu Adamu Ladommatos, Nicos Hellier, Paul J Anal Appl Pyrolysis Article This paper concerns the effect of unsaturation of hydrocarbons (single, double, and triple bonds) on soot particle characteristics (mass, number, and size) and on the carcinogenicity of soot particles. The soot particles were produced from oxygen-free pyrolysis of five hydrocarbons, namely: propane, propylene, ethane, ethylene, and acetylene. The characteristics of soot particles were measured with the aid of a differential mobility spectrometer (Cambustion-DMS-500) and measurement of soot mass concentration was confirmed using gravimetric filter measurements. The soot particle carcinogenicity was estimated from the emission quantities of total polyaromatic hydrocarbons (PAHs) and the toxicity equivalent factor (TEF) of each PAH. Oxygen-free pyrolysis of the hydrocarbon fuels was conducted in a laminar tube reactor within the temperature range of 1050 –1350oC at a constant nitrogen flow rate of 20 L/min and constant fuel flow rate of 1% (vol) on carbon-1 basis. The experimental results showed that increasing unsaturation of fuels from single to double and to triple bonds increased the mass concentration, particle size, number concentration, and carcinogenicity of soot particle notably at the initial temperature of 1050 oC. Increase in the pyrolysis temperature of the tube reactor from 1050 – 1350oC, increased the mass concentration and sizes of the soot particle while the number concentration and carcinogenicity of the soot particle decreased. There was a positive correlation between the soot particle number and the corresponding soot particle carcinogenicity, while a negative correlation was observed between the soot particle mass and size with soot particle carcinogenicity regardless of the pyrolysis temperature examined. The potential implication of these observations is that, low-temperature combustion (LTC) applications, aimed at reducing emissions of soot and NOx, could produce higher soot particle number concentration of higher carcinogenicity. Elsevier B.V. 2020-10 2020-08-12 /pmc/articles/PMC7419260/ /pubmed/32836580 http://dx.doi.org/10.1016/j.jaap.2020.104900 Text en © 2020 Elsevier B.V. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
spellingShingle | Article Dandajeh, Hamisu Adamu Ladommatos, Nicos Hellier, Paul Influence of unsaturation of hydrocarbons on the characteristics and carcinogenicity of soot particles |
title | Influence of unsaturation of hydrocarbons on the characteristics and carcinogenicity of soot particles |
title_full | Influence of unsaturation of hydrocarbons on the characteristics and carcinogenicity of soot particles |
title_fullStr | Influence of unsaturation of hydrocarbons on the characteristics and carcinogenicity of soot particles |
title_full_unstemmed | Influence of unsaturation of hydrocarbons on the characteristics and carcinogenicity of soot particles |
title_short | Influence of unsaturation of hydrocarbons on the characteristics and carcinogenicity of soot particles |
title_sort | influence of unsaturation of hydrocarbons on the characteristics and carcinogenicity of soot particles |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7419260/ https://www.ncbi.nlm.nih.gov/pubmed/32836580 http://dx.doi.org/10.1016/j.jaap.2020.104900 |
work_keys_str_mv | AT dandajehhamisuadamu influenceofunsaturationofhydrocarbonsonthecharacteristicsandcarcinogenicityofsootparticles AT ladommatosnicos influenceofunsaturationofhydrocarbonsonthecharacteristicsandcarcinogenicityofsootparticles AT hellierpaul influenceofunsaturationofhydrocarbonsonthecharacteristicsandcarcinogenicityofsootparticles |