Cargando…
A Deep Learning Framework to Predict Tumor Tissue-of-Origin Based on Copy Number Alteration
Cancer of unknown primary site (CUPS) is a type of metastatic tumor for which the sites of tumor origin cannot be determined. Precise diagnosis of the tissue origin for metastatic CUPS is crucial for developing treatment schemes to improve patient prognosis. Recently, there have been many studies us...
Autores principales: | Liang, Ying, Wang, Haifeng, Yang, Jialiang, Li, Xiong, Dai, Chan, Shao, Peng, Tian, Geng, Wang, Bo, Wang, Yinglong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7419421/ https://www.ncbi.nlm.nih.gov/pubmed/32850687 http://dx.doi.org/10.3389/fbioe.2020.00701 |
Ejemplares similares
-
TOOme: A Novel Computational Framework to Infer Cancer Tissue-of-Origin by Integrating Both Gene Mutation and Expression
por: He, Binsheng, et al.
Publicado: (2020) -
A Neural Network Framework for Predicting the Tissue-of-Origin of 15 Common Cancer Types Based on RNA-Seq Data
por: He, Binsheng, et al.
Publicado: (2020) -
CopySwitch—in vivo Optimization of Gene Copy Numbers for Heterologous Gene Expression in Bacillus subtilis
por: Nadler, Florian, et al.
Publicado: (2019) -
Copy Number Variation Pattern for Discriminating MACROD2 States of Colorectal Cancer Subtypes
por: Zhang, ShiQi, et al.
Publicado: (2019) -
CNV-PCC: An efficient method for detecting copy number variations from next-generation sequencing data
por: Zhang, Tong, et al.
Publicado: (2022)