Cargando…

Development of a Web-Based Tool for Risk Assessment and Exposure Control Planning of Silica-Producing Tasks in the Construction Sector

We describe the development and implementation of a novel, on-line risk assessment tool for respirable crystalline silica (RCS) exposure for use in the construction sector. It was motivated by the introduction of new OHS regulation in British Columbia that allowed for the substitution of exposure me...

Descripción completa

Detalles Bibliográficos
Autores principales: Davies, Hugh W., Gorman-Ng, Melanie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7419426/
https://www.ncbi.nlm.nih.gov/pubmed/32850594
http://dx.doi.org/10.3389/fpubh.2020.00371
_version_ 1783569881233358848
author Davies, Hugh W.
Gorman-Ng, Melanie
author_facet Davies, Hugh W.
Gorman-Ng, Melanie
author_sort Davies, Hugh W.
collection PubMed
description We describe the development and implementation of a novel, on-line risk assessment tool for respirable crystalline silica (RCS) exposure for use in the construction sector. It was motivated by the introduction of new OHS regulation in British Columbia that allowed for the substitution of exposure measurement data with “objective air monitoring data” collected at “equivalent work operations.” This allowance encouraged the introduction of quantitative risk assessment in a notoriously challenging work environment but it was concluded that without assistance, the typical construction employer would struggle to identify, extract, and interpret validate objective data. The tool described here was based on a continually-updatable RCS exposure database, and a predictive regression model based on the database to generate exposure risk estimates. The model was embedded in an adaptive web-based application that can be run on common platforms. The design followed standard web conventions and features so that no specialized training is required for its use. It was designed to be usable by end-users with varying expertise, including non-OHS experts. Users describe the RCS-dust generating task they will perform, and associated control measures. The tool estimates both uncontrolled and controlled task-based exposure concentrations. Using additional information entered by the user, the on-line tool generates an “exposure control plan” or ECP, a legally regulated document for those undertaking work potentially exposing workers to RCS particulate. The development of the tool was a community-based, tri-partite effort of the local OHS regulator, construction employers, and exposure scientists. In addition to being a practical risk assessment tool, the designers wanted it to function as an educational tool, and that it should explore novel methods for exposure data collection and use. The strengths of this approach include the publicly shared updateable database that encourages continuous improvement and illustrates best practices; and the timely and cost effective collection and sharing of exposure data in a value-added manner. It is however limited to a single task per ECP, and only considers exposure to task operators, and not adjacent workers. Currently in BC, users generate up to 3,900 ECP's per year with the tool.
format Online
Article
Text
id pubmed-7419426
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-74194262020-08-25 Development of a Web-Based Tool for Risk Assessment and Exposure Control Planning of Silica-Producing Tasks in the Construction Sector Davies, Hugh W. Gorman-Ng, Melanie Front Public Health Public Health We describe the development and implementation of a novel, on-line risk assessment tool for respirable crystalline silica (RCS) exposure for use in the construction sector. It was motivated by the introduction of new OHS regulation in British Columbia that allowed for the substitution of exposure measurement data with “objective air monitoring data” collected at “equivalent work operations.” This allowance encouraged the introduction of quantitative risk assessment in a notoriously challenging work environment but it was concluded that without assistance, the typical construction employer would struggle to identify, extract, and interpret validate objective data. The tool described here was based on a continually-updatable RCS exposure database, and a predictive regression model based on the database to generate exposure risk estimates. The model was embedded in an adaptive web-based application that can be run on common platforms. The design followed standard web conventions and features so that no specialized training is required for its use. It was designed to be usable by end-users with varying expertise, including non-OHS experts. Users describe the RCS-dust generating task they will perform, and associated control measures. The tool estimates both uncontrolled and controlled task-based exposure concentrations. Using additional information entered by the user, the on-line tool generates an “exposure control plan” or ECP, a legally regulated document for those undertaking work potentially exposing workers to RCS particulate. The development of the tool was a community-based, tri-partite effort of the local OHS regulator, construction employers, and exposure scientists. In addition to being a practical risk assessment tool, the designers wanted it to function as an educational tool, and that it should explore novel methods for exposure data collection and use. The strengths of this approach include the publicly shared updateable database that encourages continuous improvement and illustrates best practices; and the timely and cost effective collection and sharing of exposure data in a value-added manner. It is however limited to a single task per ECP, and only considers exposure to task operators, and not adjacent workers. Currently in BC, users generate up to 3,900 ECP's per year with the tool. Frontiers Media S.A. 2020-08-05 /pmc/articles/PMC7419426/ /pubmed/32850594 http://dx.doi.org/10.3389/fpubh.2020.00371 Text en Copyright © 2020 Davies and Gorman-Ng. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Public Health
Davies, Hugh W.
Gorman-Ng, Melanie
Development of a Web-Based Tool for Risk Assessment and Exposure Control Planning of Silica-Producing Tasks in the Construction Sector
title Development of a Web-Based Tool for Risk Assessment and Exposure Control Planning of Silica-Producing Tasks in the Construction Sector
title_full Development of a Web-Based Tool for Risk Assessment and Exposure Control Planning of Silica-Producing Tasks in the Construction Sector
title_fullStr Development of a Web-Based Tool for Risk Assessment and Exposure Control Planning of Silica-Producing Tasks in the Construction Sector
title_full_unstemmed Development of a Web-Based Tool for Risk Assessment and Exposure Control Planning of Silica-Producing Tasks in the Construction Sector
title_short Development of a Web-Based Tool for Risk Assessment and Exposure Control Planning of Silica-Producing Tasks in the Construction Sector
title_sort development of a web-based tool for risk assessment and exposure control planning of silica-producing tasks in the construction sector
topic Public Health
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7419426/
https://www.ncbi.nlm.nih.gov/pubmed/32850594
http://dx.doi.org/10.3389/fpubh.2020.00371
work_keys_str_mv AT davieshughw developmentofawebbasedtoolforriskassessmentandexposurecontrolplanningofsilicaproducingtasksintheconstructionsector
AT gormanngmelanie developmentofawebbasedtoolforriskassessmentandexposurecontrolplanningofsilicaproducingtasksintheconstructionsector