Cargando…
A Neural Network Framework for Predicting the Tissue-of-Origin of 15 Common Cancer Types Based on RNA-Seq Data
Sequencing-based identification of tumor tissue-of-origin (TOO) is critical for patients with cancer of unknown primary lesions. Even if the TOO of a tumor can be diagnosed by clinicopathological observation, reevaluations by computational methods can help avoid misdiagnosis. In this study, we devel...
Autores principales: | He, Binsheng, Zhang, Yanxiang, Zhou, Zhen, Wang, Bo, Liang, Yuebin, Lang, Jidong, Lin, Huixin, Bing, Pingping, Yu, Lan, Sun, Dejun, Luo, Huaiqing, Yang, Jialiang, Tian, Geng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7419649/ https://www.ncbi.nlm.nih.gov/pubmed/32850691 http://dx.doi.org/10.3389/fbioe.2020.00737 |
Ejemplares similares
-
TOOme: A Novel Computational Framework to Infer Cancer Tissue-of-Origin by Integrating Both Gene Mutation and Expression
por: He, Binsheng, et al.
Publicado: (2020) -
A New Method for CTC Images Recognition Based on Machine Learning
por: He, Binsheng, et al.
Publicado: (2020) -
Assessing the Impact of Data Preprocessing on Analyzing Next Generation Sequencing Data
por: He, Binsheng, et al.
Publicado: (2020) -
A Deep Learning Framework to Predict Tumor Tissue-of-Origin Based on Copy Number Alteration
por: Liang, Ying, et al.
Publicado: (2020) -
Editorial: Bioinformatics analysis tools for nanopore sequencing and applications
por: Lang, Jidong, et al.
Publicado: (2023)