Cargando…
Adipose Tissue-Derived Stem Cells: The Biologic Basis and Future Directions for Tissue Engineering
Mesenchymal stem cells (MSCs) have been isolated from a variety of tissues using different methods. Active research have confirmed that the most accessible site to collect them is the adipose tissue; which has a significantly higher concentration of MSCs. Moreover; harvesting from adipose tissue is...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7420246/ https://www.ncbi.nlm.nih.gov/pubmed/32708508 http://dx.doi.org/10.3390/ma13143210 |
_version_ | 1783569960144994304 |
---|---|
author | Câmara, Diana Aparecida Dias Shibli, Jamil Awad Müller, Eduardo Alexandre De-Sá-Junior, Paulo Luiz Porcacchia, Allan Saj Blay, Alberto Lizier, Nelson Foresto |
author_facet | Câmara, Diana Aparecida Dias Shibli, Jamil Awad Müller, Eduardo Alexandre De-Sá-Junior, Paulo Luiz Porcacchia, Allan Saj Blay, Alberto Lizier, Nelson Foresto |
author_sort | Câmara, Diana Aparecida Dias |
collection | PubMed |
description | Mesenchymal stem cells (MSCs) have been isolated from a variety of tissues using different methods. Active research have confirmed that the most accessible site to collect them is the adipose tissue; which has a significantly higher concentration of MSCs. Moreover; harvesting from adipose tissue is less invasive; there are no ethical limitations and a lower risk of severe complications. These adipose-derived stem cells (ASCs) are also able to increase at higher rates and showing telomerase activity, which acts by maintaining the DNA stability during cell divisions. Adipose-derived stem cells secret molecules that show important function in other cells vitality and mechanisms associated with the immune system, central nervous system, the heart and several muscles. They release cytokines involved in pro/anti-inflammatory, angiogenic and hematopoietic processes. Adipose-derived stem cells also have immunosuppressive properties and have been reported to be “immune privileged” since they show negative or low expression of human leukocyte antigens. Translational medicine and basic research projects can take advantage of bioprinting. This technology allows precise control for both scaffolds and cells. The properties of cell adhesion, migration, maturation, proliferation, mimicry of cell microenvironment, and differentiation should be promoted by the printed biomaterial used in tissue engineering. Self-renewal and potency are presented by MSCs, which implies in an open-source for 3D bioprinting and regenerative medicine. Considering these features and necessities, ASCs can be applied in the designing of tissue engineering products. Understanding the heterogeneity of ASCs and optimizing their properties can contribute to making the best therapeutic use of these cells and opening new paths to make tissue engineering even more useful. |
format | Online Article Text |
id | pubmed-7420246 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-74202462020-08-18 Adipose Tissue-Derived Stem Cells: The Biologic Basis and Future Directions for Tissue Engineering Câmara, Diana Aparecida Dias Shibli, Jamil Awad Müller, Eduardo Alexandre De-Sá-Junior, Paulo Luiz Porcacchia, Allan Saj Blay, Alberto Lizier, Nelson Foresto Materials (Basel) Review Mesenchymal stem cells (MSCs) have been isolated from a variety of tissues using different methods. Active research have confirmed that the most accessible site to collect them is the adipose tissue; which has a significantly higher concentration of MSCs. Moreover; harvesting from adipose tissue is less invasive; there are no ethical limitations and a lower risk of severe complications. These adipose-derived stem cells (ASCs) are also able to increase at higher rates and showing telomerase activity, which acts by maintaining the DNA stability during cell divisions. Adipose-derived stem cells secret molecules that show important function in other cells vitality and mechanisms associated with the immune system, central nervous system, the heart and several muscles. They release cytokines involved in pro/anti-inflammatory, angiogenic and hematopoietic processes. Adipose-derived stem cells also have immunosuppressive properties and have been reported to be “immune privileged” since they show negative or low expression of human leukocyte antigens. Translational medicine and basic research projects can take advantage of bioprinting. This technology allows precise control for both scaffolds and cells. The properties of cell adhesion, migration, maturation, proliferation, mimicry of cell microenvironment, and differentiation should be promoted by the printed biomaterial used in tissue engineering. Self-renewal and potency are presented by MSCs, which implies in an open-source for 3D bioprinting and regenerative medicine. Considering these features and necessities, ASCs can be applied in the designing of tissue engineering products. Understanding the heterogeneity of ASCs and optimizing their properties can contribute to making the best therapeutic use of these cells and opening new paths to make tissue engineering even more useful. MDPI 2020-07-18 /pmc/articles/PMC7420246/ /pubmed/32708508 http://dx.doi.org/10.3390/ma13143210 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Câmara, Diana Aparecida Dias Shibli, Jamil Awad Müller, Eduardo Alexandre De-Sá-Junior, Paulo Luiz Porcacchia, Allan Saj Blay, Alberto Lizier, Nelson Foresto Adipose Tissue-Derived Stem Cells: The Biologic Basis and Future Directions for Tissue Engineering |
title | Adipose Tissue-Derived Stem Cells: The Biologic Basis and Future Directions for Tissue Engineering |
title_full | Adipose Tissue-Derived Stem Cells: The Biologic Basis and Future Directions for Tissue Engineering |
title_fullStr | Adipose Tissue-Derived Stem Cells: The Biologic Basis and Future Directions for Tissue Engineering |
title_full_unstemmed | Adipose Tissue-Derived Stem Cells: The Biologic Basis and Future Directions for Tissue Engineering |
title_short | Adipose Tissue-Derived Stem Cells: The Biologic Basis and Future Directions for Tissue Engineering |
title_sort | adipose tissue-derived stem cells: the biologic basis and future directions for tissue engineering |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7420246/ https://www.ncbi.nlm.nih.gov/pubmed/32708508 http://dx.doi.org/10.3390/ma13143210 |
work_keys_str_mv | AT camaradianaaparecidadias adiposetissuederivedstemcellsthebiologicbasisandfuturedirectionsfortissueengineering AT shiblijamilawad adiposetissuederivedstemcellsthebiologicbasisandfuturedirectionsfortissueengineering AT mullereduardoalexandre adiposetissuederivedstemcellsthebiologicbasisandfuturedirectionsfortissueengineering AT desajuniorpauloluiz adiposetissuederivedstemcellsthebiologicbasisandfuturedirectionsfortissueengineering AT porcacchiaallansaj adiposetissuederivedstemcellsthebiologicbasisandfuturedirectionsfortissueengineering AT blayalberto adiposetissuederivedstemcellsthebiologicbasisandfuturedirectionsfortissueengineering AT liziernelsonforesto adiposetissuederivedstemcellsthebiologicbasisandfuturedirectionsfortissueengineering |