Cargando…
Predicting the Development of Type 2 Diabetes in a Large Australian Cohort Using Machine-Learning Techniques: Longitudinal Survey Study
BACKGROUND: Previous conventional models for the prediction of diabetes could be updated by incorporating the increasing amount of health data available and new risk prediction methodology. OBJECTIVE: We aimed to develop a substantially improved diabetes risk prediction model using sophisticated mac...
Autores principales: | Zhang, Lei, Shang, Xianwen, Sreedharan, Subhashaan, Yan, Xixi, Liu, Jianbin, Keel, Stuart, Wu, Jinrong, Peng, Wei, He, Mingguang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7420582/ https://www.ncbi.nlm.nih.gov/pubmed/32720912 http://dx.doi.org/10.2196/16850 |
Ejemplares similares
-
Leading Determinants for Disease-Free Status in Community-Dwelling Middle-Aged Men and Women: A 9-Year Follow-Up Cohort Study
por: Shang, Xianwen, et al.
Publicado: (2019) -
Predicting the 10-year risk of cataract surgery using machine learning techniques on questionnaire data: findings from the 45 and Up Study
por: Wang, Wei, et al.
Publicado: (2022) -
The impact of the coronavirus disease 2019 pandemic on elective urological procedures in Australia
por: John, Athul, et al.
Publicado: (2022) -
Spatial Analysis of Incidence of Diagnosed Type 2 Diabetes Mellitus and Its Association With Obesity and Physical Inactivity
por: Wu, Jinrong, et al.
Publicado: (2021) -
Effect of physical activity on reducing the risk of diabetic retinopathy progression: 10-year prospective findings from the 45 and Up Study
por: Yan, Xixi, et al.
Publicado: (2021)