Cargando…
Evaluation of approaches for multiple imputation of three-level data
BACKGROUND: Three-level data arising from repeated measures on individuals who are clustered within larger units are common in health research studies. Missing data are prominent in such longitudinal studies and multiple imputation (MI) is a popular approach for handling missing data. Extensions of...
Autores principales: | Wijesuriya, Rushani, Moreno-Betancur, Margarita, Carlin, John B., Lee, Katherine J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7422505/ https://www.ncbi.nlm.nih.gov/pubmed/32787781 http://dx.doi.org/10.1186/s12874-020-01079-8 |
Ejemplares similares
-
Evaluation of approaches for accommodating interactions and non‐linear terms in multiple imputation of incomplete three‐level data
por: Wijesuriya, Rushani, et al.
Publicado: (2021) -
Multiple imputation approaches for handling incomplete three‐level data with time‐varying cluster‐memberships
por: Wijesuriya, Rushani, et al.
Publicado: (2022) -
Evaluation of multiple imputation approaches for handling missing covariate information in a case-cohort study with a binary outcome
por: Middleton, Melissa, et al.
Publicado: (2022) -
Handling of missing data with multiple imputation in observational studies that address causal questions: protocol for a scoping review
por: Mainzer, Rheanna, et al.
Publicado: (2023) -
Should multiple imputation be stratified by exposure group when estimating causal effects via outcome regression in observational studies?
por: Zhang, Jiaxin, et al.
Publicado: (2023)