Cargando…
An automatic nuclei segmentation method based on deep convolutional neural networks for histopathology images
BACKGROUND: Since nuclei segmentation in histopathology images can provide key information for identifying the presence or stage of a disease, the images need to be assessed carefully. However, color variation in histopathology images, and various structures of nuclei are two major obstacles in accu...
Autores principales: | Jung, Hwejin, Lodhi, Bilal, Kang, Jaewoo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7422516/ https://www.ncbi.nlm.nih.gov/pubmed/32903361 http://dx.doi.org/10.1186/s42490-019-0026-8 |
Ejemplares similares
-
Classification of lung nodules in CT scans using three-dimensional deep convolutional neural networks with a checkpoint ensemble method
por: Jung, Hwejin, et al.
Publicado: (2018) -
Detection of masses in mammograms using a one-stage object detector based on a deep convolutional neural network
por: Jung, Hwejin, et al.
Publicado: (2018) -
Fully automatic wound segmentation with deep convolutional neural networks
por: Wang, Chuanbo, et al.
Publicado: (2020) -
Automated segmentation of deep brain nuclei using convolutional neural networks and susceptibility weighted imaging
por: Beliveau, Vincent, et al.
Publicado: (2021) -
Microscopic nuclei classification, segmentation, and detection with improved deep convolutional neural networks (DCNN)
por: Alom, Zahangir, et al.
Publicado: (2022)