Cargando…
A deep error correction network for compressed sensing MRI
BACKGROUND: CS-MRI (compressed sensing for magnetic resonance imaging) exploits image sparsity properties to reconstruct MRI from very few Fourier k-space measurements. Due to imperfect modelings in the inverse imaging, state-of-the-art CS-MRI methods tend to leave structural reconstruction errors....
Autores principales: | Sun, Liyan, Wu, Yawen, Fan, Zhiwen, Ding, Xinghao, Huang, Yue, Paisley, John |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7422575/ https://www.ncbi.nlm.nih.gov/pubmed/32903379 http://dx.doi.org/10.1186/s42490-020-0037-5 |
Ejemplares similares
-
SALSA-Net: Explainable Deep Unrolling Networks for Compressed Sensing
por: Song, Heping, et al.
Publicado: (2023) -
Phase Error Correction for Approximated Observation-Based Compressed Sensing Radar Imaging
por: Li, Bo, et al.
Publicado: (2017) -
Video compressive sensing for dynamic MRI
por: Shi, Jianing V, et al.
Publicado: (2012) -
Revisiting [Formula: see text]-wavelet compressed-sensing MRI in the era of deep learning
por: Gu, Hongyi, et al.
Publicado: (2022) -
Deep Sensing for Compressive Video Acquisition †
por: Yoshida, Michitaka, et al.
Publicado: (2023)