Cargando…

Monitoring the resilience of a no-take marine reserve to a range extending species using benthic imagery

Global climate change is driving the redistribution of marine species and thereby potentially restructuring endemic communities. Understanding how localised conservation measures such as protection from additional human pressures can confer resilience to ecosystems is therefore an important area of...

Descripción completa

Detalles Bibliográficos
Autores principales: Perkins, Nicholas R., Hosack, Geoffrey R., Foster, Scott D., Monk, Jacquomo, Barrett, Neville S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7423107/
https://www.ncbi.nlm.nih.gov/pubmed/32785267
http://dx.doi.org/10.1371/journal.pone.0237257
_version_ 1783570117084315648
author Perkins, Nicholas R.
Hosack, Geoffrey R.
Foster, Scott D.
Monk, Jacquomo
Barrett, Neville S.
author_facet Perkins, Nicholas R.
Hosack, Geoffrey R.
Foster, Scott D.
Monk, Jacquomo
Barrett, Neville S.
author_sort Perkins, Nicholas R.
collection PubMed
description Global climate change is driving the redistribution of marine species and thereby potentially restructuring endemic communities. Understanding how localised conservation measures such as protection from additional human pressures can confer resilience to ecosystems is therefore an important area of research. Here, we examine the resilience of a no-take marine reserve (NTR) to the establishment of urchin barrens habitat. The barrens habitat is created through overgrazing of kelp by an invading urchin species that is expanding its range within a hotspot of rapid climate change. In our study region, a multi-year monitoring program provides a unique time-series of benthic imagery collected by an Autonomous Underwater Vehicle (AUV) within an NTR and nearby reference areas. We use a Bayesian hierarchical spatio-temporal modelling approach to estimate whether the NTR is associated with reduced formation of urchin barrens, and thereby enhances local resilience. Our approach controls for the important environmental covariates of depth and habitat complexity (quantified as rugosity derived from multibeam sonar mapping), as well as spatial and temporal dependence. We find evidence for the NTR conferring resilience with a strong reserve effect that suggests improved resistance to the establishment of barrens. However, we find a concerning and consistent trajectory of increasing barrens cover in both the reference areas and the NTR, with the odds of barrens increasing by approximately 32% per year. Thus, whereas the reserve is demonstrating resilience to the initial establishment of barrens, there is currently no evidence of recovery once barrens are established. We also find that depth and rugosity covariates derived from multibeam mapping provide useful predictors for barrens occurrence. These results have important management implications as they demonstrate: (i) the importance of monitoring programs to inform adaptive management; (ii) that NTRs provide a potential local conservation management tool under climate change impacts, and (iii) that technologies such as AUVs and multibeam mapping can be harnessed to inform regional decision-making. Continuation of the current monitoring program is required to assess whether the NTR can provide long term protection from a phase shift that replaces kelp with urchin barrens.
format Online
Article
Text
id pubmed-7423107
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-74231072020-08-20 Monitoring the resilience of a no-take marine reserve to a range extending species using benthic imagery Perkins, Nicholas R. Hosack, Geoffrey R. Foster, Scott D. Monk, Jacquomo Barrett, Neville S. PLoS One Research Article Global climate change is driving the redistribution of marine species and thereby potentially restructuring endemic communities. Understanding how localised conservation measures such as protection from additional human pressures can confer resilience to ecosystems is therefore an important area of research. Here, we examine the resilience of a no-take marine reserve (NTR) to the establishment of urchin barrens habitat. The barrens habitat is created through overgrazing of kelp by an invading urchin species that is expanding its range within a hotspot of rapid climate change. In our study region, a multi-year monitoring program provides a unique time-series of benthic imagery collected by an Autonomous Underwater Vehicle (AUV) within an NTR and nearby reference areas. We use a Bayesian hierarchical spatio-temporal modelling approach to estimate whether the NTR is associated with reduced formation of urchin barrens, and thereby enhances local resilience. Our approach controls for the important environmental covariates of depth and habitat complexity (quantified as rugosity derived from multibeam sonar mapping), as well as spatial and temporal dependence. We find evidence for the NTR conferring resilience with a strong reserve effect that suggests improved resistance to the establishment of barrens. However, we find a concerning and consistent trajectory of increasing barrens cover in both the reference areas and the NTR, with the odds of barrens increasing by approximately 32% per year. Thus, whereas the reserve is demonstrating resilience to the initial establishment of barrens, there is currently no evidence of recovery once barrens are established. We also find that depth and rugosity covariates derived from multibeam mapping provide useful predictors for barrens occurrence. These results have important management implications as they demonstrate: (i) the importance of monitoring programs to inform adaptive management; (ii) that NTRs provide a potential local conservation management tool under climate change impacts, and (iii) that technologies such as AUVs and multibeam mapping can be harnessed to inform regional decision-making. Continuation of the current monitoring program is required to assess whether the NTR can provide long term protection from a phase shift that replaces kelp with urchin barrens. Public Library of Science 2020-08-12 /pmc/articles/PMC7423107/ /pubmed/32785267 http://dx.doi.org/10.1371/journal.pone.0237257 Text en © 2020 Perkins et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Perkins, Nicholas R.
Hosack, Geoffrey R.
Foster, Scott D.
Monk, Jacquomo
Barrett, Neville S.
Monitoring the resilience of a no-take marine reserve to a range extending species using benthic imagery
title Monitoring the resilience of a no-take marine reserve to a range extending species using benthic imagery
title_full Monitoring the resilience of a no-take marine reserve to a range extending species using benthic imagery
title_fullStr Monitoring the resilience of a no-take marine reserve to a range extending species using benthic imagery
title_full_unstemmed Monitoring the resilience of a no-take marine reserve to a range extending species using benthic imagery
title_short Monitoring the resilience of a no-take marine reserve to a range extending species using benthic imagery
title_sort monitoring the resilience of a no-take marine reserve to a range extending species using benthic imagery
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7423107/
https://www.ncbi.nlm.nih.gov/pubmed/32785267
http://dx.doi.org/10.1371/journal.pone.0237257
work_keys_str_mv AT perkinsnicholasr monitoringtheresilienceofanotakemarinereservetoarangeextendingspeciesusingbenthicimagery
AT hosackgeoffreyr monitoringtheresilienceofanotakemarinereservetoarangeextendingspeciesusingbenthicimagery
AT fosterscottd monitoringtheresilienceofanotakemarinereservetoarangeextendingspeciesusingbenthicimagery
AT monkjacquomo monitoringtheresilienceofanotakemarinereservetoarangeextendingspeciesusingbenthicimagery
AT barrettnevilles monitoringtheresilienceofanotakemarinereservetoarangeextendingspeciesusingbenthicimagery