Cargando…

Transfer of metastatic traits via miR‐200c in extracellular vesicles derived from colorectal cancer stem cells is inhibited by atractylenolide I

Cancer stem cells (CSCs) are important factors contributing to tumorigenesis. We examined whether CSCs isolated from colorectal cancer (CRC) cells possess metastatic properties that can be transferred to non‐CSCs via the delivery of miR‐200c enclosed in extracellular vesicles (EVs). The inhibitory e...

Descripción completa

Detalles Bibliográficos
Autores principales: Tang, Dongxin, Xu, Xiaofen, Ying, Jialiang, Xie, Tian, Cao, Gang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7423185/
https://www.ncbi.nlm.nih.gov/pubmed/32898324
http://dx.doi.org/10.1002/ctm2.139
_version_ 1783570131946831872
author Tang, Dongxin
Xu, Xiaofen
Ying, Jialiang
Xie, Tian
Cao, Gang
author_facet Tang, Dongxin
Xu, Xiaofen
Ying, Jialiang
Xie, Tian
Cao, Gang
author_sort Tang, Dongxin
collection PubMed
description Cancer stem cells (CSCs) are important factors contributing to tumorigenesis. We examined whether CSCs isolated from colorectal cancer (CRC) cells possess metastatic properties that can be transferred to non‐CSCs via the delivery of miR‐200c enclosed in extracellular vesicles (EVs). The inhibitory effect of atractylenolide I (ATL‐1), a traditional Chinese medicinal compound, on miR‐200c activity and metastatic transfer was investigated. EVs were isolated from colorectal CSCs. The expression of miR‐200c was evaluated in CSCs and CSC‐derived EVs, and horizontal transfer of metastatic properties via EVs to non‐CSCs was investigated in terms of cell behavior and phosphatidylinositol‐4,5‐bisphosphate 3‐kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling. CSCs isolated from metastatic CRC cells exhibited higher levels of miR‐200c than those in nonmetastatic CRC cells. Overexpression of miR‐200c in CSCs enhanced metastatic potential by promoting proliferation and inhibiting apoptosis, in turn leading to the release of EVs carrying an excess of miR‐200c. Non‐CSCs co‐cultured with miR‐200c‐containing EVs exhibited enhanced invasion and stemness maintenance associated with PI3K/Akt/mTOR activation, demonstrating successful metastatic transfer via EV delivery. Furthermore, ATL‐1 impaired the EV‐mediated transfer of metastatic properties by suppressing miR‐200c activity and disrupting EV uptake by non‐CSCs. EVs are critical signal transducers that facilitate intercellular communication and exchange of metastatic properties, which can be controlled by ATL‐1. The findings are useful in the development of microRNA‐based anticancer strategies by targeting EV‐mediated activity, especially using natural compounds.
format Online
Article
Text
id pubmed-7423185
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-74231852020-08-13 Transfer of metastatic traits via miR‐200c in extracellular vesicles derived from colorectal cancer stem cells is inhibited by atractylenolide I Tang, Dongxin Xu, Xiaofen Ying, Jialiang Xie, Tian Cao, Gang Clin Transl Med Research Articles Cancer stem cells (CSCs) are important factors contributing to tumorigenesis. We examined whether CSCs isolated from colorectal cancer (CRC) cells possess metastatic properties that can be transferred to non‐CSCs via the delivery of miR‐200c enclosed in extracellular vesicles (EVs). The inhibitory effect of atractylenolide I (ATL‐1), a traditional Chinese medicinal compound, on miR‐200c activity and metastatic transfer was investigated. EVs were isolated from colorectal CSCs. The expression of miR‐200c was evaluated in CSCs and CSC‐derived EVs, and horizontal transfer of metastatic properties via EVs to non‐CSCs was investigated in terms of cell behavior and phosphatidylinositol‐4,5‐bisphosphate 3‐kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling. CSCs isolated from metastatic CRC cells exhibited higher levels of miR‐200c than those in nonmetastatic CRC cells. Overexpression of miR‐200c in CSCs enhanced metastatic potential by promoting proliferation and inhibiting apoptosis, in turn leading to the release of EVs carrying an excess of miR‐200c. Non‐CSCs co‐cultured with miR‐200c‐containing EVs exhibited enhanced invasion and stemness maintenance associated with PI3K/Akt/mTOR activation, demonstrating successful metastatic transfer via EV delivery. Furthermore, ATL‐1 impaired the EV‐mediated transfer of metastatic properties by suppressing miR‐200c activity and disrupting EV uptake by non‐CSCs. EVs are critical signal transducers that facilitate intercellular communication and exchange of metastatic properties, which can be controlled by ATL‐1. The findings are useful in the development of microRNA‐based anticancer strategies by targeting EV‐mediated activity, especially using natural compounds. John Wiley and Sons Inc. 2020-08-12 /pmc/articles/PMC7423185/ /pubmed/32898324 http://dx.doi.org/10.1002/ctm2.139 Text en © 2020 The Authors. Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Tang, Dongxin
Xu, Xiaofen
Ying, Jialiang
Xie, Tian
Cao, Gang
Transfer of metastatic traits via miR‐200c in extracellular vesicles derived from colorectal cancer stem cells is inhibited by atractylenolide I
title Transfer of metastatic traits via miR‐200c in extracellular vesicles derived from colorectal cancer stem cells is inhibited by atractylenolide I
title_full Transfer of metastatic traits via miR‐200c in extracellular vesicles derived from colorectal cancer stem cells is inhibited by atractylenolide I
title_fullStr Transfer of metastatic traits via miR‐200c in extracellular vesicles derived from colorectal cancer stem cells is inhibited by atractylenolide I
title_full_unstemmed Transfer of metastatic traits via miR‐200c in extracellular vesicles derived from colorectal cancer stem cells is inhibited by atractylenolide I
title_short Transfer of metastatic traits via miR‐200c in extracellular vesicles derived from colorectal cancer stem cells is inhibited by atractylenolide I
title_sort transfer of metastatic traits via mir‐200c in extracellular vesicles derived from colorectal cancer stem cells is inhibited by atractylenolide i
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7423185/
https://www.ncbi.nlm.nih.gov/pubmed/32898324
http://dx.doi.org/10.1002/ctm2.139
work_keys_str_mv AT tangdongxin transferofmetastatictraitsviamir200cinextracellularvesiclesderivedfromcolorectalcancerstemcellsisinhibitedbyatractylenolidei
AT xuxiaofen transferofmetastatictraitsviamir200cinextracellularvesiclesderivedfromcolorectalcancerstemcellsisinhibitedbyatractylenolidei
AT yingjialiang transferofmetastatictraitsviamir200cinextracellularvesiclesderivedfromcolorectalcancerstemcellsisinhibitedbyatractylenolidei
AT xietian transferofmetastatictraitsviamir200cinextracellularvesiclesderivedfromcolorectalcancerstemcellsisinhibitedbyatractylenolidei
AT caogang transferofmetastatictraitsviamir200cinextracellularvesiclesderivedfromcolorectalcancerstemcellsisinhibitedbyatractylenolidei