Cargando…
Modelling and forecasting of COVID-19 spread using wavelet-coupled random vector functional link networks
Researchers around the world are applying various prediction models for COVID-19 to make informed decisions and impose appropriate control measures. Because of a high degree of uncertainty and lack of necessary data, the traditional models showed low accuracy over the long term forecast. Although th...
Autores principales: | Hazarika, Barenya Bikash, Gupta, Deepak |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7423518/ https://www.ncbi.nlm.nih.gov/pubmed/32834800 http://dx.doi.org/10.1016/j.asoc.2020.106626 |
Ejemplares similares
-
Neural network powered COVID-19 spread forecasting model
por: Wieczorek, Michał, et al.
Publicado: (2020) -
Polynomial and Wavelet-Type Transfer Function Models to Improve Fisheries’ Landing Forecasting with Exogenous Variables
por: Vivas, Eliana, et al.
Publicado: (2019) -
Wavelet LSTM for Fault Forecasting in Electrical Power Grids
por: Branco, Nathielle Waldrigues, et al.
Publicado: (2022) -
Wavelet gated multiformer for groundwater time series forecasting
por: Serravalle Reis Rodrigues, Vitor Hugo, et al.
Publicado: (2023) -
Forecasting Natural Gas Prices Using Wavelets, Time Series, and Artificial Neural Networks
por: Jin, Junghwan, et al.
Publicado: (2015)