Cargando…

Bcl-xL overexpression decreases GILZ levels and inhibits glucocorticoid-induced activation of caspase-8 and caspase-3 in mouse thymocytes

Glucocorticoids promote thymocyte apoptosis and modulate transcription of numerous regulators of thymic apoptosis. Among these, glucocorticoid-induced leucine zipper (GILZ) is strongly upregulated in the thymus. We have previously demonstrated that GILZ decreases Bcl-xL expression, activates caspase...

Descripción completa

Detalles Bibliográficos
Autores principales: Muscari, Isabella, Adorisio, Sabrina, Liberati, Anna Marina, Thuy, Trinh Thi, Van Sung, Tran, Cannarile, Lorenza, Ayroldi, Emira, Riccardi, Carlo, Delfino, Domenico V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7423577/
https://www.ncbi.nlm.nih.gov/pubmed/32803151
http://dx.doi.org/10.1016/j.jtauto.2020.100035
Descripción
Sumario:Glucocorticoids promote thymocyte apoptosis and modulate transcription of numerous regulators of thymic apoptosis. Among these, glucocorticoid-induced leucine zipper (GILZ) is strongly upregulated in the thymus. We have previously demonstrated that GILZ decreases Bcl-xL expression, activates caspase-8 and caspase-3, and augments apoptosis in mice thymocytes. To better understand the causal links between glucocorticoids, GILZ, Bcl-xL, caspase-8, and caspase-3, we analyzed the thymocytes of Bcl-xL-overexpressing transgenic mice with or without glucocorticoid stimulation in vitro. Overexpression of Bcl-xL inhibited the glucocorticoid-induced up-regulation of GILZ in murine thymocytes as well as the glucocorticoid-dependent activation of caspase-8 and caspase-3. By contrast, no appreciable change in caspase-9 activation was observed upon Bcl-xL overexpression. Thus, these experiments highlighted a novel thymocyte apoptotic pathway in which Bcl-xL overexpression inhibited the glucocorticoid-induced activation of caspase-8 and caspase-3, but not caspase-9, as well as the accumulation of GILZ protein. These findings, together with our previous results showing that caspase-8 protects GILZ from proteasomal degradation, suggest the presence of a glucocorticoid-induced apoptosis self-amplification loop in which GILZ decreases Bcl-xL expression with a subsequent activation of caspase-8 and caspase-3; caspase-8 activation then enhances the stability and accumulation of GILZ and ensures the unimpeded and irreversible progression of apoptosis. By contrast, inappropriate increases in Bcl-xL levels could have catastrophic effects on thymic apoptosis as it would shut down caspase-8/3 activation, diminish the expression of GILZ, and impair the fine control necessary for thymic generation of a healthy immune repertoire.