Cargando…
Ecotoxicological assessments of biochar additions to soil employing earthworm species Eisenia fetida and Lumbricus terrestris
Biochar is the degradation-resistant product generated by the pyrolysis of organic materials and is produced for the intended use of land application in order to promote carbon sequestration and soil improvement. However, despite the many potential benefits biochar application offers, it is importan...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7423795/ https://www.ncbi.nlm.nih.gov/pubmed/30796657 http://dx.doi.org/10.1007/s11356-019-04542-2 |
_version_ | 1783570196856832000 |
---|---|
author | Elliston, Tom Oliver, Ian W. |
author_facet | Elliston, Tom Oliver, Ian W. |
author_sort | Elliston, Tom |
collection | PubMed |
description | Biochar is the degradation-resistant product generated by the pyrolysis of organic materials and is produced for the intended use of land application in order to promote carbon sequestration and soil improvement. However, despite the many potential benefits biochar application offers, it is important to quantify any ecological impacts that may result from soil amendment in order to avoid potentially causing negative effects upon soil biota which are crucial in the many ecosystem services provided by soil. Any impacts on earthworms in particular are important to evaluate because of their pivotal role in organic matter breakdown, nutrient cycling and soil formation. In this study, we conducted a series of ecotoxicological assays to determine lethal and sublethal (avoidance, mass change and moisture content) effects of heavy biochar applications that reflect levels that may be used in soil restoration efforts. Two earthworm species, Eisenia fetida, an epigeic species, and Lumbricus terrestris, an anecic species, were utilised as test organisms. Two types of biochar, produced from wheat straw and rice husk feedstocks, respectively, were applied to OECD artificial soil and to a natural soil (Kettering loam) at rates of up to 20% w/w. The influence of biochar application on soil porewater chloride, fluoride and phosphate concentrations was also assessed. The biochar applications induced only a subtle level of avoidance behaviour while effects on survival over a 4-week exposure period were inconsistent. However, death and physical damage to some individual earthworms at high biochar application rates were observed, the mechanisms and processes leading to which should be investigated further. Earthworm development (mean mass change over time) proved to be a more sensitive measure, revealing negative effects on L. terrestris at 10% and 20% (w/w) wheat biochar applications in OECD soil and at 20% (w/w) applications of both biochars in Kettering loam. The moisture content of E. fetida remained remarkably consistent across all treatments (~ 82%), indicating that this is not a sensitive measure of effects. The high rates of biochar application resulted in increased chloride (2 to 3-fold) and phosphate (100-fold) concentrations in simulated soil porewaters, which has important implications for soil fertility and production but also for environmental management. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s11356-019-04542-2) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-7423795 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-74237952020-08-18 Ecotoxicological assessments of biochar additions to soil employing earthworm species Eisenia fetida and Lumbricus terrestris Elliston, Tom Oliver, Ian W. Environ Sci Pollut Res Int Earthworm and Soil Pollution Biochar is the degradation-resistant product generated by the pyrolysis of organic materials and is produced for the intended use of land application in order to promote carbon sequestration and soil improvement. However, despite the many potential benefits biochar application offers, it is important to quantify any ecological impacts that may result from soil amendment in order to avoid potentially causing negative effects upon soil biota which are crucial in the many ecosystem services provided by soil. Any impacts on earthworms in particular are important to evaluate because of their pivotal role in organic matter breakdown, nutrient cycling and soil formation. In this study, we conducted a series of ecotoxicological assays to determine lethal and sublethal (avoidance, mass change and moisture content) effects of heavy biochar applications that reflect levels that may be used in soil restoration efforts. Two earthworm species, Eisenia fetida, an epigeic species, and Lumbricus terrestris, an anecic species, were utilised as test organisms. Two types of biochar, produced from wheat straw and rice husk feedstocks, respectively, were applied to OECD artificial soil and to a natural soil (Kettering loam) at rates of up to 20% w/w. The influence of biochar application on soil porewater chloride, fluoride and phosphate concentrations was also assessed. The biochar applications induced only a subtle level of avoidance behaviour while effects on survival over a 4-week exposure period were inconsistent. However, death and physical damage to some individual earthworms at high biochar application rates were observed, the mechanisms and processes leading to which should be investigated further. Earthworm development (mean mass change over time) proved to be a more sensitive measure, revealing negative effects on L. terrestris at 10% and 20% (w/w) wheat biochar applications in OECD soil and at 20% (w/w) applications of both biochars in Kettering loam. The moisture content of E. fetida remained remarkably consistent across all treatments (~ 82%), indicating that this is not a sensitive measure of effects. The high rates of biochar application resulted in increased chloride (2 to 3-fold) and phosphate (100-fold) concentrations in simulated soil porewaters, which has important implications for soil fertility and production but also for environmental management. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s11356-019-04542-2) contains supplementary material, which is available to authorized users. Springer Berlin Heidelberg 2019-02-22 2020 /pmc/articles/PMC7423795/ /pubmed/30796657 http://dx.doi.org/10.1007/s11356-019-04542-2 Text en © The Author(s) 2019 OpenAccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Earthworm and Soil Pollution Elliston, Tom Oliver, Ian W. Ecotoxicological assessments of biochar additions to soil employing earthworm species Eisenia fetida and Lumbricus terrestris |
title | Ecotoxicological assessments of biochar additions to soil employing earthworm species Eisenia fetida and Lumbricus terrestris |
title_full | Ecotoxicological assessments of biochar additions to soil employing earthworm species Eisenia fetida and Lumbricus terrestris |
title_fullStr | Ecotoxicological assessments of biochar additions to soil employing earthworm species Eisenia fetida and Lumbricus terrestris |
title_full_unstemmed | Ecotoxicological assessments of biochar additions to soil employing earthworm species Eisenia fetida and Lumbricus terrestris |
title_short | Ecotoxicological assessments of biochar additions to soil employing earthworm species Eisenia fetida and Lumbricus terrestris |
title_sort | ecotoxicological assessments of biochar additions to soil employing earthworm species eisenia fetida and lumbricus terrestris |
topic | Earthworm and Soil Pollution |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7423795/ https://www.ncbi.nlm.nih.gov/pubmed/30796657 http://dx.doi.org/10.1007/s11356-019-04542-2 |
work_keys_str_mv | AT ellistontom ecotoxicologicalassessmentsofbiocharadditionstosoilemployingearthwormspecieseiseniafetidaandlumbricusterrestris AT oliverianw ecotoxicologicalassessmentsofbiocharadditionstosoilemployingearthwormspecieseiseniafetidaandlumbricusterrestris |