Cargando…
Development and clinical application of deep learning model for lung nodules screening on CT images
Lung cancer screening based on low-dose CT (LDCT) has now been widely applied because of its effectiveness and ease of performance. Radiologists who evaluate a large LDCT screening images face enormous challenges, including mechanical repetition and boring work, the easy omission of small nodules, l...
Autores principales: | Cui, Sijia, Ming, Shuai, Lin, Yi, Chen, Fanghong, Shen, Qiang, Li, Hui, Chen, Gen, Gong, Xiangyang, Wang, Haochu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7423892/ https://www.ncbi.nlm.nih.gov/pubmed/32788705 http://dx.doi.org/10.1038/s41598-020-70629-3 |
Ejemplares similares
-
Early Warning Information for Severe and Critical Patients With COVID-19 Based on Quantitative CT Analysis of Lung Segments
por: Yuyun, Xu, et al.
Publicado: (2021) -
Detection of Lung Nodules in Micro-CT Imaging Using Deep Learning
por: Holbrook, Matthew D., et al.
Publicado: (2021) -
Pricing and cost-saving potential for deep-learning computer-aided lung nodule detection software in CT lung cancer screening
por: Du, Yihui, et al.
Publicado: (2023) -
Deep Learning-Based CT Imaging in the Diagnosis of Treatment Effect of Pulmonary Nodules and Radiofrequency Ablation
por: Zhou, Chengwei, et al.
Publicado: (2022) -
Possible Bias in Supervised Deep Learning Algorithms for CT Lung Nodule Detection and Classification
por: Sourlos, Nikos, et al.
Publicado: (2022)