Cargando…
Comparing different deep learning architectures for classification of chest radiographs
Chest radiographs are among the most frequently acquired images in radiology and are often the subject of computer vision research. However, most of the models used to classify chest radiographs are derived from openly available deep neural networks, trained on large image datasets. These datasets d...
Autores principales: | Bressem, Keno K., Adams, Lisa C., Erxleben, Christoph, Hamm, Bernd, Niehues, Stefan M., Vahldiek, Janis L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7423963/ https://www.ncbi.nlm.nih.gov/pubmed/32788602 http://dx.doi.org/10.1038/s41598-020-70479-z |
Ejemplares similares
-
Deep learning for accurately recognizing common causes of shoulder pain on radiographs
por: Grauhan, Nils F., et al.
Publicado: (2021) -
Computed Tomography Imaging in Simulated Ongoing Cardiopulmonary Resuscitation: No Need to Switch Off the Chest Compression Device during Image Acquisition
por: Graef, Jessica, et al.
Publicado: (2021) -
Evaluation of potential tissue heating during percutaneous drill-assisted bone sampling in an in vivo porcine study
por: Niehues, Stefan M., et al.
Publicado: (2021) -
Exploring Patterns of Dynamic Size Changes of Lesions after Hepatic Microwave Ablation in an In Vivo Porcine Model
por: Bressem, Keno K., et al.
Publicado: (2020) -
Do submillisievert-chest CT protocols impact diagnostic quality in suspected COVID-19 patients?
por: Thieß, Hans-Martin, et al.
Publicado: (2022)