Cargando…
Deep neural networks capture texture sensitivity in V2
Deep convolutional neural networks (CNNs) trained on visual objects have shown intriguing ability to predict some response properties of visual cortical neurons. However, the factors (e.g., if the model is trained or not, receptive field size) and computations (e.g., convolution, rectification, pool...
Autores principales: | Laskar, Md Nasir Uddin, Sanchez Giraldo, Luis Gonzalo, Schwartz, Odelia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7424103/ https://www.ncbi.nlm.nih.gov/pubmed/32692830 http://dx.doi.org/10.1167/jov.20.7.21 |
Ejemplares similares
-
Generalizing biological surround suppression based on center surround similarity via deep neural network models
por: Pan, Xu, et al.
Publicado: (2023) -
Deep convolutional neural networks for regular texture recognition
por: Liu, Ni, et al.
Publicado: (2022) -
Inference via sparse coding in a hierarchical vision model
por: Bowren, Joshua, et al.
Publicado: (2022) -
Segmentation of Drilled Holes in Texture Wooden Furniture Panels Using Deep Neural Network
por: Augustauskas, Rytis, et al.
Publicado: (2021) -
Molecular optimization by capturing chemist’s intuition using deep neural networks
por: He, Jiazhen, et al.
Publicado: (2021)