Cargando…

Multiple texture cues are integrated for perception of 3D slant from texture

The projected image of a textured surface contains multiple texture cues to three-dimensional (3D) surface orientation. Previous studies have reported conflicting findings about the roles of various texture cues. We tested the influence of texture compression relative to other texture cues using a c...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Zhongting, Saunders, Jeffrey A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Association for Research in Vision and Ophthalmology 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7424111/
https://www.ncbi.nlm.nih.gov/pubmed/32678877
http://dx.doi.org/10.1167/jov.20.7.14
_version_ 1783570270692311040
author Chen, Zhongting
Saunders, Jeffrey A.
author_facet Chen, Zhongting
Saunders, Jeffrey A.
author_sort Chen, Zhongting
collection PubMed
description The projected image of a textured surface contains multiple texture cues to three-dimensional (3D) surface orientation. Previous studies have reported conflicting findings about the roles of various texture cues. We tested the influence of texture compression relative to other texture cues using a cue conflict paradigm. Observers viewed images of textured planar surfaces with varied slants (0°–70°) and estimated 3D slant by aligning their hand with the virtual surface. Conflicts between texture cues were created by stretching or compression the texture along the surface, which selectively changes the slant specified by texture compression. The texture distortions were relatively small (±10% or ±20%) to limit the size of the cue conflicts. Across three experiments, we varied the field of view (10° vs. 20°), texture regularity (circles vs. Voronoi), and availability of binocular cues. In monocular conditions, slant estimates were strongly affected by texture distortions. Analyses of cue weighting found that texture compression had more influence on slant settings than other texture cues and the relative influence of texture compression decreased with larger field of view and less regular textures. In binocular conditions, we also observed effects of texture distortion, and the influence of texture compression relative to information from stereo and other texture cues increased with slant. Our results provide evidence that texture compression contributes to perceived slant, in addition to other texture cues such as texture scaling. The observed effects of simulated slant, field of view, and texture regularity on cue weighting were all consistent with a model that integrates multiple sources of information according to their reliability.
format Online
Article
Text
id pubmed-7424111
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher The Association for Research in Vision and Ophthalmology
record_format MEDLINE/PubMed
spelling pubmed-74241112020-08-26 Multiple texture cues are integrated for perception of 3D slant from texture Chen, Zhongting Saunders, Jeffrey A. J Vis Article The projected image of a textured surface contains multiple texture cues to three-dimensional (3D) surface orientation. Previous studies have reported conflicting findings about the roles of various texture cues. We tested the influence of texture compression relative to other texture cues using a cue conflict paradigm. Observers viewed images of textured planar surfaces with varied slants (0°–70°) and estimated 3D slant by aligning their hand with the virtual surface. Conflicts between texture cues were created by stretching or compression the texture along the surface, which selectively changes the slant specified by texture compression. The texture distortions were relatively small (±10% or ±20%) to limit the size of the cue conflicts. Across three experiments, we varied the field of view (10° vs. 20°), texture regularity (circles vs. Voronoi), and availability of binocular cues. In monocular conditions, slant estimates were strongly affected by texture distortions. Analyses of cue weighting found that texture compression had more influence on slant settings than other texture cues and the relative influence of texture compression decreased with larger field of view and less regular textures. In binocular conditions, we also observed effects of texture distortion, and the influence of texture compression relative to information from stereo and other texture cues increased with slant. Our results provide evidence that texture compression contributes to perceived slant, in addition to other texture cues such as texture scaling. The observed effects of simulated slant, field of view, and texture regularity on cue weighting were all consistent with a model that integrates multiple sources of information according to their reliability. The Association for Research in Vision and Ophthalmology 2020-07-17 /pmc/articles/PMC7424111/ /pubmed/32678877 http://dx.doi.org/10.1167/jov.20.7.14 Text en Copyright 2020 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
spellingShingle Article
Chen, Zhongting
Saunders, Jeffrey A.
Multiple texture cues are integrated for perception of 3D slant from texture
title Multiple texture cues are integrated for perception of 3D slant from texture
title_full Multiple texture cues are integrated for perception of 3D slant from texture
title_fullStr Multiple texture cues are integrated for perception of 3D slant from texture
title_full_unstemmed Multiple texture cues are integrated for perception of 3D slant from texture
title_short Multiple texture cues are integrated for perception of 3D slant from texture
title_sort multiple texture cues are integrated for perception of 3d slant from texture
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7424111/
https://www.ncbi.nlm.nih.gov/pubmed/32678877
http://dx.doi.org/10.1167/jov.20.7.14
work_keys_str_mv AT chenzhongting multipletexturecuesareintegratedforperceptionof3dslantfromtexture
AT saundersjeffreya multipletexturecuesareintegratedforperceptionof3dslantfromtexture