Cargando…

Spatiotemporal data analysis with chronological networks

The number of spatiotemporal data sets has increased rapidly in the last years, which demands robust and fast methods to extract information from this kind of data. Here, we propose a network-based model, called Chronnet, for spatiotemporal data analysis. The network construction process consists of...

Descripción completa

Detalles Bibliográficos
Autores principales: Ferreira, Leonardo N., Vega-Oliveros, Didier A., Cotacallapa, Moshé, Cardoso, Manoel F., Quiles, Marcos G., Zhao, Liang, Macau, Elbert E. N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7424518/
https://www.ncbi.nlm.nih.gov/pubmed/32788573
http://dx.doi.org/10.1038/s41467-020-17634-2
_version_ 1783570355543080960
author Ferreira, Leonardo N.
Vega-Oliveros, Didier A.
Cotacallapa, Moshé
Cardoso, Manoel F.
Quiles, Marcos G.
Zhao, Liang
Macau, Elbert E. N.
author_facet Ferreira, Leonardo N.
Vega-Oliveros, Didier A.
Cotacallapa, Moshé
Cardoso, Manoel F.
Quiles, Marcos G.
Zhao, Liang
Macau, Elbert E. N.
author_sort Ferreira, Leonardo N.
collection PubMed
description The number of spatiotemporal data sets has increased rapidly in the last years, which demands robust and fast methods to extract information from this kind of data. Here, we propose a network-based model, called Chronnet, for spatiotemporal data analysis. The network construction process consists of dividing a geometric space into grid cells represented by nodes connected chronologically. Strong links in the network represent consecutive recurrent events between cells. The chronnet construction process is fast, making the model suitable to process large data sets. Using artificial and real data sets, we show how chronnets can capture data properties beyond simple statistics, like frequent patterns, spatial changes, outliers, and spatiotemporal clusters. Therefore, we conclude that chronnets represent a robust tool for the analysis of spatiotemporal data sets.
format Online
Article
Text
id pubmed-7424518
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-74245182020-08-18 Spatiotemporal data analysis with chronological networks Ferreira, Leonardo N. Vega-Oliveros, Didier A. Cotacallapa, Moshé Cardoso, Manoel F. Quiles, Marcos G. Zhao, Liang Macau, Elbert E. N. Nat Commun Article The number of spatiotemporal data sets has increased rapidly in the last years, which demands robust and fast methods to extract information from this kind of data. Here, we propose a network-based model, called Chronnet, for spatiotemporal data analysis. The network construction process consists of dividing a geometric space into grid cells represented by nodes connected chronologically. Strong links in the network represent consecutive recurrent events between cells. The chronnet construction process is fast, making the model suitable to process large data sets. Using artificial and real data sets, we show how chronnets can capture data properties beyond simple statistics, like frequent patterns, spatial changes, outliers, and spatiotemporal clusters. Therefore, we conclude that chronnets represent a robust tool for the analysis of spatiotemporal data sets. Nature Publishing Group UK 2020-08-12 /pmc/articles/PMC7424518/ /pubmed/32788573 http://dx.doi.org/10.1038/s41467-020-17634-2 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Ferreira, Leonardo N.
Vega-Oliveros, Didier A.
Cotacallapa, Moshé
Cardoso, Manoel F.
Quiles, Marcos G.
Zhao, Liang
Macau, Elbert E. N.
Spatiotemporal data analysis with chronological networks
title Spatiotemporal data analysis with chronological networks
title_full Spatiotemporal data analysis with chronological networks
title_fullStr Spatiotemporal data analysis with chronological networks
title_full_unstemmed Spatiotemporal data analysis with chronological networks
title_short Spatiotemporal data analysis with chronological networks
title_sort spatiotemporal data analysis with chronological networks
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7424518/
https://www.ncbi.nlm.nih.gov/pubmed/32788573
http://dx.doi.org/10.1038/s41467-020-17634-2
work_keys_str_mv AT ferreiraleonardon spatiotemporaldataanalysiswithchronologicalnetworks
AT vegaoliverosdidiera spatiotemporaldataanalysiswithchronologicalnetworks
AT cotacallapamoshe spatiotemporaldataanalysiswithchronologicalnetworks
AT cardosomanoelf spatiotemporaldataanalysiswithchronologicalnetworks
AT quilesmarcosg spatiotemporaldataanalysiswithchronologicalnetworks
AT zhaoliang spatiotemporaldataanalysiswithchronologicalnetworks
AT macauelberten spatiotemporaldataanalysiswithchronologicalnetworks