Cargando…
Extracting user influence from ratings and trust for rating prediction in recommendations
The Collaborative Filtering (CF) algorithm based on trust has been the main method used to solve the cold start problem in Recommendation Systems (RSs) for the past few years. Nevertheless, the current trust-based CF algorithm ignores the implicit influence contained in the ratings and trust data. I...
Autores principales: | Shi, Wenchuan, Wang, Liejun, Qin, Jiwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7424568/ https://www.ncbi.nlm.nih.gov/pubmed/32788684 http://dx.doi.org/10.1038/s41598-020-70350-1 |
Ejemplares similares
-
A Recommendation Approach for Rating Prediction Based on User Interest and Trust Value
por: Chen, Hailong, et al.
Publicado: (2021) -
Patient-Rated Trust of Spine Surgeons: Influencing
Factors
por: Haglin, Jack M., et al.
Publicado: (2018) -
A Ranking Recommendation Algorithm Based on Dynamic User Preference
por: Wei, Chunting, et al.
Publicado: (2022) -
FPLV: Enhancing recommender systems with fuzzy preference, vector similarity, and user community for rating prediction
por: Su, Zhan, et al.
Publicado: (2023) -
A Collaborative Location Based Travel Recommendation System through Enhanced Rating Prediction for the Group of Users
por: Ravi, Logesh, et al.
Publicado: (2016)