Cargando…
Mild and Versatile Functionalization of Nacre-Mimetic Cellulose Nanofibrils/Clay Nanocomposites by Organocatalytic Surface Engineering
[Image: see text] Development of surface-engineering strategies, which are facile, versatile, and mild, are highly desirable in tailor-made functionalization of high-performance bioinspired nanocomposites. We herein disclose for the first time a general organocatalytic strategy for the functionaliza...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7424572/ https://www.ncbi.nlm.nih.gov/pubmed/32803029 http://dx.doi.org/10.1021/acsomega.0c00978 |
Sumario: | [Image: see text] Development of surface-engineering strategies, which are facile, versatile, and mild, are highly desirable in tailor-made functionalization of high-performance bioinspired nanocomposites. We herein disclose for the first time a general organocatalytic strategy for the functionalization and hydrophobization of nacre-mimetic nanocomposites, which includes vide supra key aspects of surface engineering. The merging of metal-free catalysis and the design of nacre-mimetic nanocomposite materials were demonstrated by the organocatalytic surface engineering of cellulose nanofibrils/clay nanocomposites providing the corresponding bioinspired nanocomposites with good mechanical properties, hydrophobicity, and useful thia-, amino, and olefinic functionalities. |
---|