Cargando…
Impact of Doxorubicin on Self-Organization of Congo Red: Quantum Chemical Calculations and Molecular Dynamics Simulations
[Image: see text] Quantum-chemical calculations and molecular dynamics simulation were applied to a model self-organization process of Congo red (CR) molecules in aqueous solution and the impact of doxorubicin (DOX) molecules on such a process. It was demonstrated that both pure CR/CR and mixed CR/D...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7424579/ https://www.ncbi.nlm.nih.gov/pubmed/32803031 http://dx.doi.org/10.1021/acsomega.0c01095 |
_version_ | 1783570365531815936 |
---|---|
author | Kwiecińska, Klaudia Stachowicz-Kuśnierz, Anna Jagusiak, Anna Roterman, Irena Korchowiec, Jacek |
author_facet | Kwiecińska, Klaudia Stachowicz-Kuśnierz, Anna Jagusiak, Anna Roterman, Irena Korchowiec, Jacek |
author_sort | Kwiecińska, Klaudia |
collection | PubMed |
description | [Image: see text] Quantum-chemical calculations and molecular dynamics simulation were applied to a model self-organization process of Congo red (CR) molecules in aqueous solution and the impact of doxorubicin (DOX) molecules on such a process. It was demonstrated that both pure CR/CR and mixed CR/DOX dimers were stable. Van der Waals interactions between aromatic units were responsible for a stacked dimer formation. An important source of stabilization in the CR/CR dimer was the polarization energy. In the CR/DOX mixed dimer long range, electrostatic interactions were the main driving force leading to complexation. An implicit solvent model showed that the formation of the CR/CR dimer was favored over the CR/DOX one. Molecular dynamics simulations demonstrated rapid complexation. In the pure CR system, short sequences of ribbon-like structures were formed. Such structures might be glued by hydrogen bonds to form bigger complexes. It was shown that the aromatic part of the DOX molecule enters CR ribbons with the sugar part covering the CR ribbons. These findings demonstrated that CR may find applications as a carrier in delivering DOX molecules; however, further more extensive investigations are required. |
format | Online Article Text |
id | pubmed-7424579 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-74245792020-08-14 Impact of Doxorubicin on Self-Organization of Congo Red: Quantum Chemical Calculations and Molecular Dynamics Simulations Kwiecińska, Klaudia Stachowicz-Kuśnierz, Anna Jagusiak, Anna Roterman, Irena Korchowiec, Jacek ACS Omega [Image: see text] Quantum-chemical calculations and molecular dynamics simulation were applied to a model self-organization process of Congo red (CR) molecules in aqueous solution and the impact of doxorubicin (DOX) molecules on such a process. It was demonstrated that both pure CR/CR and mixed CR/DOX dimers were stable. Van der Waals interactions between aromatic units were responsible for a stacked dimer formation. An important source of stabilization in the CR/CR dimer was the polarization energy. In the CR/DOX mixed dimer long range, electrostatic interactions were the main driving force leading to complexation. An implicit solvent model showed that the formation of the CR/CR dimer was favored over the CR/DOX one. Molecular dynamics simulations demonstrated rapid complexation. In the pure CR system, short sequences of ribbon-like structures were formed. Such structures might be glued by hydrogen bonds to form bigger complexes. It was shown that the aromatic part of the DOX molecule enters CR ribbons with the sugar part covering the CR ribbons. These findings demonstrated that CR may find applications as a carrier in delivering DOX molecules; however, further more extensive investigations are required. American Chemical Society 2020-07-27 /pmc/articles/PMC7424579/ /pubmed/32803031 http://dx.doi.org/10.1021/acsomega.0c01095 Text en Copyright © 2020 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. |
spellingShingle | Kwiecińska, Klaudia Stachowicz-Kuśnierz, Anna Jagusiak, Anna Roterman, Irena Korchowiec, Jacek Impact of Doxorubicin on Self-Organization of Congo Red: Quantum Chemical Calculations and Molecular Dynamics Simulations |
title | Impact of Doxorubicin on Self-Organization of Congo
Red: Quantum Chemical Calculations and Molecular Dynamics Simulations |
title_full | Impact of Doxorubicin on Self-Organization of Congo
Red: Quantum Chemical Calculations and Molecular Dynamics Simulations |
title_fullStr | Impact of Doxorubicin on Self-Organization of Congo
Red: Quantum Chemical Calculations and Molecular Dynamics Simulations |
title_full_unstemmed | Impact of Doxorubicin on Self-Organization of Congo
Red: Quantum Chemical Calculations and Molecular Dynamics Simulations |
title_short | Impact of Doxorubicin on Self-Organization of Congo
Red: Quantum Chemical Calculations and Molecular Dynamics Simulations |
title_sort | impact of doxorubicin on self-organization of congo
red: quantum chemical calculations and molecular dynamics simulations |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7424579/ https://www.ncbi.nlm.nih.gov/pubmed/32803031 http://dx.doi.org/10.1021/acsomega.0c01095 |
work_keys_str_mv | AT kwiecinskaklaudia impactofdoxorubicinonselforganizationofcongoredquantumchemicalcalculationsandmoleculardynamicssimulations AT stachowiczkusnierzanna impactofdoxorubicinonselforganizationofcongoredquantumchemicalcalculationsandmoleculardynamicssimulations AT jagusiakanna impactofdoxorubicinonselforganizationofcongoredquantumchemicalcalculationsandmoleculardynamicssimulations AT rotermanirena impactofdoxorubicinonselforganizationofcongoredquantumchemicalcalculationsandmoleculardynamicssimulations AT korchowiecjacek impactofdoxorubicinonselforganizationofcongoredquantumchemicalcalculationsandmoleculardynamicssimulations |