Cargando…

Relationship of flow-volume curve pattern on pulmonary function test with clinical and radiological features in idiopathic pulmonary fibrosis

BACKGROUND: The flow-volume (FV) curve pattern in the pulmonary function test (PFT) for obstructive lung diseases is widely recognized. However, there are few reports on FV curve pattern in idiopathic pulmonary fibrosis (IPF). In this study, we investigated the relationship between FV curve pattern...

Descripción completa

Detalles Bibliográficos
Autores principales: Nakagawa, Hiroaki, Otoshi, Ryota, Isomoto, Kohsuke, Katano, Takuma, Baba, Tomohisa, Komatsu, Shigeru, Hagiwara, Eri, Nakano, Yasutaka, Kuwahira, Ichiro, Ogura, Takashi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7424671/
https://www.ncbi.nlm.nih.gov/pubmed/32787810
http://dx.doi.org/10.1186/s12890-020-01254-z
Descripción
Sumario:BACKGROUND: The flow-volume (FV) curve pattern in the pulmonary function test (PFT) for obstructive lung diseases is widely recognized. However, there are few reports on FV curve pattern in idiopathic pulmonary fibrosis (IPF). In this study, we investigated the relationship between FV curve pattern and clinical or radiological features in IPF. METHODS: The FV curves on PFTs and chest high-resolution computed tomography (HRCT) images of 130 patients with IPF were retrospectively evaluated. The FV curves were divided into four groups based on the presence or absence of the convex and concave patterns: convex/concave, non-convex/concave, convex/non-concave, and non-convex/non-concave. Using a computer-aided system, CT honeycombing area (%HA) and subtracted low attenuation area (%sLAA) were quantitatively measured. To assess the distribution of CT findings, the lung area was divided into upper, lower, central, and peripheral areas. The relationships of FV curve patterns with patient characteristics, spirometry results, and quantitative CT findings were evaluated. RESULTS: The patients with convex pattern was identified in 93 (71.5%) and concave pattern in 72 (55.4%). Among the four groups, patients with the convex/non-concave pattern had significantly lower forced vital capacity (FVC) and higher %HA of the upper/peripheral lung area (p = 0.018, and p = 0.005, respectively). The convex/non-concave pattern was a significant predictor of mortality for IPF (hazard ratio, 2.19; p = 0.032). CONCLUSIONS: Patients with convex/non-concave pattern in FV curve have lower FVC and poorer prognosis with distinct distribution of fibrosis. Hence, FV curve pattern might be a useful predictor of mortality in IPF.