Cargando…
Model Development for Nanosecond Laser-Induced Damage Caused by Manufacturing-Induced Defects on Potassium Dihydrogen Phosphate Crystals
[Image: see text] Nanosecond laser-induced damage on (potassium dihydrogen phosphate) KDP crystals is a complex process, which involves coupled actions of multi-physics fields. However, the mechanisms governing the laser damage behaviors have not been fully understood and there have been no availabl...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7424745/ https://www.ncbi.nlm.nih.gov/pubmed/32803085 http://dx.doi.org/10.1021/acsomega.0c02950 |
_version_ | 1783570391074078720 |
---|---|
author | Yang, Hao Cheng, Jian Liu, Zhichao Liu, Qi Zhao, Linjie Tan, Chao Wang, Jian Chen, Mingjun |
author_facet | Yang, Hao Cheng, Jian Liu, Zhichao Liu, Qi Zhao, Linjie Tan, Chao Wang, Jian Chen, Mingjun |
author_sort | Yang, Hao |
collection | PubMed |
description | [Image: see text] Nanosecond laser-induced damage on (potassium dihydrogen phosphate) KDP crystals is a complex process, which involves coupled actions of multi-physics fields. However, the mechanisms governing the laser damage behaviors have not been fully understood and there have been no available models to accurately describe this complex process. In this work, based on the theories of electromagnetic, thermodynamic, and hydrodynamic fields, a coupled multi-physics model is developed to describe the transient behavior of laser-supported energy deposition and diffusion accompanied by the surface defect (e.g., surface cracks)-initiated laser damage process. It is found that the light intensification caused by the defects near the crystal surface plays a significant role in triggering the laser-induced damage, and a large amount of energy is quickly deposited via the light intensity-activated nonlinear excitation. Using the developed model, the maximum temperature of the crystal material irradiated by a 3 ns pulse laser is calculated, which agrees well with previously reported experimental results. Furthermore, the modeling results suggest that physical processes such as material melting, boiling, and flowing have effects on the evolution of the laser damage process. In addition, the experimentally measured morphology of laser damage sites exhibits damage features of boiling cores, molten regions, and fracture zones, which are direct evidence of bowl-shaped high-temperature expansion predicted by the model. These results well validate that the proposed coupled multi-physics model is competent to describe the dynamic behaviors of laser damage, which can serve as a powerful tool to understand the general mechanisms of laser interactions with KDP optical crystals in the presence of different defects. |
format | Online Article Text |
id | pubmed-7424745 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-74247452020-08-14 Model Development for Nanosecond Laser-Induced Damage Caused by Manufacturing-Induced Defects on Potassium Dihydrogen Phosphate Crystals Yang, Hao Cheng, Jian Liu, Zhichao Liu, Qi Zhao, Linjie Tan, Chao Wang, Jian Chen, Mingjun ACS Omega [Image: see text] Nanosecond laser-induced damage on (potassium dihydrogen phosphate) KDP crystals is a complex process, which involves coupled actions of multi-physics fields. However, the mechanisms governing the laser damage behaviors have not been fully understood and there have been no available models to accurately describe this complex process. In this work, based on the theories of electromagnetic, thermodynamic, and hydrodynamic fields, a coupled multi-physics model is developed to describe the transient behavior of laser-supported energy deposition and diffusion accompanied by the surface defect (e.g., surface cracks)-initiated laser damage process. It is found that the light intensification caused by the defects near the crystal surface plays a significant role in triggering the laser-induced damage, and a large amount of energy is quickly deposited via the light intensity-activated nonlinear excitation. Using the developed model, the maximum temperature of the crystal material irradiated by a 3 ns pulse laser is calculated, which agrees well with previously reported experimental results. Furthermore, the modeling results suggest that physical processes such as material melting, boiling, and flowing have effects on the evolution of the laser damage process. In addition, the experimentally measured morphology of laser damage sites exhibits damage features of boiling cores, molten regions, and fracture zones, which are direct evidence of bowl-shaped high-temperature expansion predicted by the model. These results well validate that the proposed coupled multi-physics model is competent to describe the dynamic behaviors of laser damage, which can serve as a powerful tool to understand the general mechanisms of laser interactions with KDP optical crystals in the presence of different defects. American Chemical Society 2020-07-29 /pmc/articles/PMC7424745/ /pubmed/32803085 http://dx.doi.org/10.1021/acsomega.0c02950 Text en Copyright © 2020 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Yang, Hao Cheng, Jian Liu, Zhichao Liu, Qi Zhao, Linjie Tan, Chao Wang, Jian Chen, Mingjun Model Development for Nanosecond Laser-Induced Damage Caused by Manufacturing-Induced Defects on Potassium Dihydrogen Phosphate Crystals |
title | Model Development for Nanosecond Laser-Induced Damage
Caused by Manufacturing-Induced Defects on Potassium Dihydrogen Phosphate
Crystals |
title_full | Model Development for Nanosecond Laser-Induced Damage
Caused by Manufacturing-Induced Defects on Potassium Dihydrogen Phosphate
Crystals |
title_fullStr | Model Development for Nanosecond Laser-Induced Damage
Caused by Manufacturing-Induced Defects on Potassium Dihydrogen Phosphate
Crystals |
title_full_unstemmed | Model Development for Nanosecond Laser-Induced Damage
Caused by Manufacturing-Induced Defects on Potassium Dihydrogen Phosphate
Crystals |
title_short | Model Development for Nanosecond Laser-Induced Damage
Caused by Manufacturing-Induced Defects on Potassium Dihydrogen Phosphate
Crystals |
title_sort | model development for nanosecond laser-induced damage
caused by manufacturing-induced defects on potassium dihydrogen phosphate
crystals |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7424745/ https://www.ncbi.nlm.nih.gov/pubmed/32803085 http://dx.doi.org/10.1021/acsomega.0c02950 |
work_keys_str_mv | AT yanghao modeldevelopmentfornanosecondlaserinduceddamagecausedbymanufacturinginduceddefectsonpotassiumdihydrogenphosphatecrystals AT chengjian modeldevelopmentfornanosecondlaserinduceddamagecausedbymanufacturinginduceddefectsonpotassiumdihydrogenphosphatecrystals AT liuzhichao modeldevelopmentfornanosecondlaserinduceddamagecausedbymanufacturinginduceddefectsonpotassiumdihydrogenphosphatecrystals AT liuqi modeldevelopmentfornanosecondlaserinduceddamagecausedbymanufacturinginduceddefectsonpotassiumdihydrogenphosphatecrystals AT zhaolinjie modeldevelopmentfornanosecondlaserinduceddamagecausedbymanufacturinginduceddefectsonpotassiumdihydrogenphosphatecrystals AT tanchao modeldevelopmentfornanosecondlaserinduceddamagecausedbymanufacturinginduceddefectsonpotassiumdihydrogenphosphatecrystals AT wangjian modeldevelopmentfornanosecondlaserinduceddamagecausedbymanufacturinginduceddefectsonpotassiumdihydrogenphosphatecrystals AT chenmingjun modeldevelopmentfornanosecondlaserinduceddamagecausedbymanufacturinginduceddefectsonpotassiumdihydrogenphosphatecrystals |