Cargando…
A Review of Deep Learning for Screening, Diagnosis, and Detection of Glaucoma Progression
Because of recent advances in computing technology and the availability of large datasets, deep learning has risen to the forefront of artificial intelligence, with performances that often equal, or sometimes even exceed, those of human subjects on a variety of tasks, especially those related to ima...
Autores principales: | Thompson, Atalie C., Jammal, Alessandro A., Medeiros, Felipe A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7424906/ https://www.ncbi.nlm.nih.gov/pubmed/32855846 http://dx.doi.org/10.1167/tvst.9.2.42 |
Ejemplares similares
-
Artificial Intelligence Mapping of Structure to Function in Glaucoma
por: Mariottoni, Eduardo B., et al.
Publicado: (2020) -
Biomarkers and Surrogate Endpoints: Lessons Learned From Glaucoma
por: Medeiros, Felipe A.
Publicado: (2017) -
Effects of Study Population, Labeling and Training on Glaucoma Detection Using Deep Learning Algorithms
por: Christopher, Mark, et al.
Publicado: (2020) -
The Effect of Age on Increasing Susceptibility to Retinal Nerve Fiber Layer Loss in Glaucoma
por: Jammal, Alessandro A., et al.
Publicado: (2020) -
Predicting Age From Optical Coherence Tomography Scans With Deep Learning
por: Shigueoka, Leonardo S., et al.
Publicado: (2021)