Cargando…
Leveraging Multimodal Deep Learning Architecture with Retina Lesion Information to Detect Diabetic Retinopathy
PURPOSE: To improve disease severity classification from fundus images using a hybrid architecture with symptom awareness for diabetic retinopathy (DR). METHODS: We used 26,699 fundus images of 17,834 diabetic patients from three Taiwanese hospitals collected in 2007 to 2018 for DR severity classifi...
Autores principales: | Tseng, Vincent S., Chen, Ching-Long, Liang, Chang-Min, Tai, Ming-Cheng, Liu, Jung-Tzu, Wu, Po-Yi, Deng, Ming-Shan, Lee, Ya-Wen, Huang, Teng-Yi, Chen, Yi-Hao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7424907/ https://www.ncbi.nlm.nih.gov/pubmed/32855845 http://dx.doi.org/10.1167/tvst.9.2.41 |
Ejemplares similares
-
DeepRetina: Layer Segmentation of Retina in OCT Images Using Deep Learning
por: Li, Qiaoliang, et al.
Publicado: (2020) -
Systematic Comparison of Heatmapping Techniques in Deep Learning in the Context of Diabetic Retinopathy Lesion Detection
por: Van Craenendonck, Toon, et al.
Publicado: (2020) -
Transfer Learning for Automated OCTA Detection of Diabetic Retinopathy
por: Le, David, et al.
Publicado: (2020) -
Photoreceptor Fate Determination in the Vertebrate Retina
por: Wang, Sui, et al.
Publicado: (2016) -
Artificial Intelligence in Retinopathy of Prematurity Diagnosis
por: Scruggs, Brittni A., et al.
Publicado: (2020)