Cargando…
Ophthalmologist-Level Classification of Fundus Disease With Deep Neural Networks
PURPOSE: To implement the classification of fundus diseases using deep convolutional neural networks (CNN), which is trained end-to-end from fundus images directly, the only input are pixels and disease labels, and the output is a probability distribution of a fundus image belonging to 18 fundus dis...
Autores principales: | Jiang, Ping, Dou, Quansheng, Shi, Li |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7424930/ https://www.ncbi.nlm.nih.gov/pubmed/32855843 http://dx.doi.org/10.1167/tvst.9.2.39 |
Ejemplares similares
-
Non-uniform Label Smoothing for Diabetic Retinopathy Grading from Retinal Fundus Images with Deep Neural Networks
por: Galdran, Adrian, et al.
Publicado: (2020) -
Will AI Replace Ophthalmologists?
por: Korot, Edward, et al.
Publicado: (2020) -
Identifying Mouse Autoimmune Uveitis from Fundus Photographs Using Deep Learning
por: Sun, Jian, et al.
Publicado: (2020) -
A Retrospective Comparison of Deep Learning to Manual Annotations for Optic Disc and Optic Cup Segmentation in Fundus Photographs
por: Fu, Huazhu, et al.
Publicado: (2020) -
Development and Evaluation of a Deep Learning System for Screening Retinal Hemorrhage Based on Ultra-Widefield Fundus Images
por: Li, Zhongwen, et al.
Publicado: (2020)