Cargando…
Cone Identification in Choroideremia: Repeatability, Reliability, and Automation Through Use of a Convolutional Neural Network
PURPOSE: Adaptive optics imaging has enabled the visualization of photoreceptors both in health and disease. However, there remains a need for automated accurate cone photoreceptor identification in images of disease. Here, we apply an open-source convolutional neural network (CNN) to automatically...
Autores principales: | Morgan, Jessica I. W., Chen, Min, Huang, Andrew M., Jiang, Yu You, Cooper, Robert F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7424931/ https://www.ncbi.nlm.nih.gov/pubmed/32855844 http://dx.doi.org/10.1167/tvst.9.2.40 |
Ejemplares similares
-
Convolutional Neural Network Based on Fluorescein Angiography Images for Retinopathy of Prematurity Management
por: Lepore, Domenico, et al.
Publicado: (2020) -
Plus Disease in Retinopathy of Prematurity: Convolutional Neural Network Performance Using a Combined Neural Network and Feature Extraction Approach
por: Yildiz, Veysi M., et al.
Publicado: (2020) -
Reliability of an automated gaze‐controlled paradigm for capturing neural responses during visual and face processing in toddlerhood
por: Haartsen, Rianne, et al.
Publicado: (2021) -
Quantifying Graft Detachment after Descemet's Membrane Endothelial Keratoplasty with Deep Convolutional Neural Networks
por: Heslinga, Friso G., et al.
Publicado: (2020) -
Automated Recognition of Retinal Pigment Epithelium Cells on Limited Training Samples Using Neural Networks
por: Gao, Qitong, et al.
Publicado: (2020)